— 1409 articles found.

The Structure of Deitmar Schemes, II. Zeta Functions and Automorphism Groups

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (4) 2017, pp. 142-152
Vol.39 (4) 2017
Manuel Mérida-Angulo; Koen Thas Details
(Received: 2017-08-01 , Revised: 2017-09-01 )
(Received: 2017-08-01 , Revised: 2017-09-01 )

Manuel Mérida-Angulo,Ghent University, Department of Mathematics, Krijgslaan 281, S22 and S25, B-9000 Ghent, Belgium; e-mail: manmerang@gmail.com

Koen Thas,Ghent University, Department of Mathematics, Krijgslaan 281, S22 and S25, B-9000 Ghent, Belgium; e-mail: koen.thas@gmail.com

Abstract/Résumé:

We provide a coherent overview of a number of recent results obtained by the authors in the theory of schemes defined over the field with one element. Essentially, this theory encompasses the study of a functor which maps certain geometries including graphs to Deitmar constructible sets with additional structure, as such introducing a new zeta function for graphs. The functor is then used to determine the automorphism groups of the Deitmar constructible sets and their base extensions to fields.

Nous donnons une vue d’ensemble d’une nombre de résultats récents qui ont été obtenus par les auteurs dans le domaine de la théorie des schémas sur le corps à un élément. Principalement, cette théorie concerne l’étude d’un foncteur qui envoie certaines géométries (y compris les graphes) sur un ensemble constructible de Deitmar avec une structure additionnelle. De cette manière on introduit aussi une nouvelle fonction zeta pour les graphes. Le foncteur est ensuite utilisé pour déterminer les groupes d’automorphismes des ensembles constructibles de Deitmar et de ceux obtenus après une extension de base à d’autres corps.

Keywords: Deitmar scheme, Field with one element, Grothendieck ring, automorphism group, functoriality, loose graph, zeta function

AMS Subject Classification: Trees, , Varieties over finite and local fields, Grothendieck groups; $K$-theory, Schemes and morphisms, Generalizations (algebraic spaces; stacks), Zeta-functions and related questions(Birch-Swinnerton-Dyer conjecture), Finite ground fields 05C05, 05E40, 11G25, 13D15, 14A15, 14A20, 14G10, 14G15

PDF(click to download): The Structure of Deitmar Schemes, II. Zeta Functions and Automorphism Groups

On Properties of Geometric Preduals of ${\mathbf C^{k,\omega}}$ Spaces

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (4) 2017, pp. 133-141
Vol.39 (4) 2017
Alexander Brudnyi Details
(Received: 2017-07-13 , Revised: 2017-07-14 )
(Received: 2017-07-13 , Revised: 2017-07-14 )

Alexander Brudnyi,Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4; e-mail: abrudnyi@ucalgary.ca

Abstract/Résumé:

Let \(C_b^{k,\omega}({\mathbb R}^n)\) be the Banach space of \(C^k\) functions on \({\mathbb R}^n\) bounded together with all derivatives of order \(\le k\) and with derivatives of order \(k\) having moduli of continuity majorated by \(c\cdot\omega\), \(c\in{\mathbb R}_+\), for some \(\omega\in C({\mathbb R}_+)\). Let \(C_b^{k,\omega}(S):=C_b^{k,\omega}({\mathbb R}^n)|_S\) be the trace space to a closed subset \(S\subset{\mathbb R}^n\). The geometric predual \(G_b^{k,\omega}(S)\) of \(C_b^{k,\omega}(S)\) is the minimal closed subspace of the dual \(\bigl(C_b^{k,\omega}({\mathbb R}^n)\bigr)^*\) containing evaluation functionals of points in \(S\). We study geometric properties of spaces \(G_b^{k,\omega}(S)\) and their relations to the classical Whitney problems on the characterization of trace spaces of \(C^k\) functions on \({\mathbb R}^n\).

Soit \(C_b^{k, \omega} ({\mathbb R}^n)\) l’espace de Banach des fonctions \(C^k\) sur \({\mathbb R}^n\) bornées avec toutes leurs dérivées d’ordre jusqu’à \(k\) et avec les dérivées d’ordre \(k\) ayant des modules de continuité majorés par \(c \cdot \omega\), \(c \in {\mathbb R}_+\), pour quelque \(\omega \in C ({\mathbb R}_+)\). Soit \(C_b ^ {k, \omega} (S): = C_b^{k, \omega} ({\mathbb R}^n) |_S\) l’espace de trace à un fermé \(S\subset{\mathbb R} ^ n\). Le predual géométrique \(G_b^{k, \omega}(S)\) de \(C_b^{k, \omega} (S)\) est le sous-espace minimal fermé du dual \(\bigl (C_b^ {k, \omega} ({\mathbb R}^n) \bigr)^*\) contenant les fonctionnelles d’évaluation aux points de \(S\). Nous étudions les propriétés géométriques des espaces \(G_b^{k, \omega} (S)\) et leur relation avec les problèmes classiques de Whitney sur la caractérisation des espaces de trace des fonctions \(C^k\) sur \({\mathbb R}^n\).

Keywords: Finiteness Principle, Predual space, Weak Markov set, Whitney problems, approximation property, dual space, linear extension operator, weak$^*$ topology

AMS Subject Classification: Geometry and structure of normed linear spaces, Banach spaces of continuous; differentiable or analytic functions 46B20, 46E15

PDF(click to download): On Properties of Geometric Preduals of ${mathbf C^{k,omega}}$ Spaces

Grauert and Ramspott Type Theorems on the Maximal Ideal Space of ${\mathbf H^\infty}$

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (4) 2017, pp. 116-132
Vol.39 (4) 2017
Alexander Brudnyi Details
(Received: 2017-07-03 , Revised: 2017-07-06 )
(Received: 2017-07-03 , Revised: 2017-07-06 )

Alexander Brudnyi,Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4;
e-mail: abrudnyi@ucalgary.ca

Abstract/Résumé:

The classical Grauert and Ramspott theorems constitute the foundation of the Oka principle on Stein spaces. In this paper we establish analogous results on the maximal ideal space \(M(H^\infty)\) of the Banach algebra \(H^\infty\) of bounded holomorphic functions on the open unit disk \({\mathbb D}\subset{\mathbb C}\). We illustrate our results by some examples and applications to the theory of operator-valued \(H^\infty\) functions.

Les théorèmes classiques de Grauert et Ramspott constituent la base du principe d’Oka par rapport aux espaces Stein. Dans cet article, nous démontrons des résultats analogues sur l’espace idéal maximal \(M(H^\infty)\) de l’algèbre de Banach \(H^\infty\) des fonctions holomorphes bornées sur une disque d’unité ouverte \({\mathbb D} \subset{\mathbb C}\). Nous présentons nos résultats avec des exemples et des applications à la théorie des fonctions \(H^\infty\) évaluées par l’opérateur.

Keywords: Grauert theorem, Oka principle, Ramspott theorem, maximal ideal space of $H^\infty$

AMS Subject Classification: Spaces and algebras of analytic functions, Holomorphic bundles and generalizations 30H05, 32L05

PDF(click to download): Grauert and Ramspott Type Theorems on the Maximal Ideal Space of ${mathbf H^infty}$

Tilings Defined by Root Systems of Kac-Moody Algebras

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (3) 2017, pp. 103-115
Vol.39 (3) 2017
Yuan Yao Details
(Received: 2017-06-06 , Revised: 2017-06-07 )
(Received: 2017-06-06 , Revised: 2017-06-07 )

Yuan Yao,University of Toronto, Department of Mathematics, 40 St George Street, Toronto, Ontario, Canada M4S 2E4; e-mail: yy.yao@mail.utoronto.ca

Abstract/Résumé:

For root systems of symmetrizable Kac-Moody algebras, we study a tiling of the positive root cone of the form \(\bigcup_{w\in W} (1-w) C ^+\), where \(W\) is the Weyl group and \(C^+\) is the fundamental chamber. We show for general symmetrizable Kac-Moody algebras the tiles are disjoint, and the gaps between top dimensional tiles have codimension \(\geq2\). For affine Kac-Moody algebras we completely describe the closure \(\bigcup_{w\in W} \overline{(1-w) C ^+}\).

Pour les systèmes des racines d’algèbres de Kac-Moody symétriques, nous étudions un carrelage du cône des racines positifs de la forme \(\bigcup_{w\in W} (1-w) C ^+\), où \(W\) est le groupe de Weyl et \( C^+ \) est la chambre fondamentale. Nous montrons que les carreaux sont disjoints pour les algèbres de Kac-Moody symétriques, et les lacunes entre les carreaux de dimension supérieure ont codimension \(\geq 2\). Pour les algèbres de Kac-Moody affines, nous décrivons complètement \(\bigcup_{w\in W} \overline{(1-w) C ^+}\).

Keywords: Kac-Moody Algebras, Root System, Tiling

AMS Subject Classification: , Kac-Moody (super)algebras (structure and representation theory) 17B22, 17B67

PDF(click to download): Tilings Defined by Root Systems of Kac-Moody Algebras

Discrete Invariants of Generically Inconsistent Systems of Laurent Polynomials

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (3) 2017, pp. 90-102
Vol.39 (3) 2017
Leonid Monin Details
(Received: 2017-03-17 , Revised: 2017-04-17 )
(Received: 2017-03-17 , Revised: 2017-04-17 )

Leonid Monin,Department of Mathematics, University of Toronto, 40 St. George St., Toronto, Ontario, Canada M5S 2E4; e-mail: lmonin@math.toronto.edu

Abstract/Résumé:

Let \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) be finite sets in \( \mathbb{Z}^n \) and let \( Y \subset (\mathbb{C}^*)^n \) be an algebraic variety defined by a system of equations \[f_1 = \ldots = f_k = 0,\] where \( f_1, \ldots, f_k \) are Laurent polynomials with supports in \(\mathcal{A}_1, \ldots, \mathcal{A}_k\). Assuming that \( f_1, \ldots, f_k \) are sufficiently generic, the Newton polyhedron theory computes discrete invariants of \( Y \) in terms of the Newton polyhedra of \( f_1, \ldots, f_k \). It may appear that the generic system with fixed supports \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) is inconsistent. In this paper, we compute discrete invariants of algebraic varieties defined by systems of equations which are generic in the set of consistent system with support in \( \mathcal{A}_1, \ldots, \mathcal{A}_k\) by reducing the question to the Newton polyhedra theory. Unlike the classical situation, not only the Newton polyhedra of \(f_1,\dots,f_k\), but also the supports \(\mathcal{A}_1,\dots,\mathcal{A}_k\) themselves appear in the answers.

Soit \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) un ensemble fini dans \( \mathbb{Z}^n \) et soit \( Y \subset (\mathbb{C}^*)^n \) une variété algébrique définie par un système d’équations \[f_1 = \ldots = f_k = 0,\]\( f_1, \ldots, f_k \) sont les polynômes de Laurent avec support dans \(\mathcal{A}_1, \ldots, \mathcal{A}_k\). Supposant que \( f_1, \ldots, f_k \) soient suffisamment génériques, la théorie du polyèdre de Newton calcule les invariants discrets de \( Y \) en fonction du polyèdre de Newton de \( f_1, \ldots, f_k \). Il peut sembler que le système avec support fixe \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) est inconsistent. Dans ce papier, nous calculons les invariants discrets des variétés algébriques définies par des systèmes d’équations qui sont génériques dans l’ensemble des systèmes cohérents avec support dans \( \mathcal{A}_1, \ldots, \mathcal{A}_k\) en réduisant la question à la théorie du polyèdre de Newton. Contrairement à la situation classique, non seulement le polyèdre de Newton de \(f_1,\dots,f_k\), mais aussi les supports \(\mathcal{A}_1,\dots,\mathcal{A}_k\) eux-mêmes apparaissent dans la solution.

Keywords: Laurent polynomials, Newton polyhedra, generically inconsistent systems, resultants

AMS Subject Classification: Toric varieties; Newton polyhedra 14M25

PDF(click to download): Discrete Invariants of Generically Inconsistent Systems of Laurent Polynomials

Renormalization of Unicritical Analytic Circle Maps

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (3) 2017, pp. 77-89
Vol.39 (3) 2017
Michael Yampolsky Details
(Received: 2016-09-26 , Revised: 2016-12-23 )
(Received: 2016-09-26 , Revised: 2016-12-23 )

Michael Yampolsky,Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4; e-mail: yampol@math.toronto.edu

Abstract/Résumé:

In this paper we generalize renormalization theory for analytic critical circle maps with a cubic critical point to the case of maps with an arbitrary odd critical exponent by proving a quasiconformal rigidity statement for renormalizations of such maps.

Dans cet article on généralise la théorie de la renormalisation pour les transformations criticales analytiques du circle à point critical cubique au cas de transformations à exposant critical impair arbitraire, en démontrant une affirmation de rigidité quasi-conforme.

Keywords: Blaschke fractions, Renormalization, critical circle maps, rigidity

AMS Subject Classification: Maps of the circle, Universality; renormalization, Renormalization 37E10, 37E20, 37F25

PDF(click to download): Renormalization of Unicritical Analytic Circle Maps

Polynomial Power Residue Symbols and $q$-resultants

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (2) 2017, pp. 60-66
Vol.39 (2) 2017
Yoshinori Hamahata Details
(Received: 2016-03-17 , Revised: 2016-05-22 )
(Received: 2016-03-17 , Revised: 2016-05-22 )

Yoshinori Hamahata,Department of Applied Mathematics, Okayama University of Science, Ridai-cho 1-1, Okayama, 700{0005, Japan; e-mail: hamahata@xmath.ous.ac.jp

Abstract/Résumé:

We establish a relation between polynomial power residue symbols and \(q\)-resultants of \(\mathbb{F}_q\)-linear polynomials. We then establish the \(q-1\)-st power reciprocity law.

On établit une relation entre le symbole de résidu de puissances en caractéristique \(p\) et le \(q\)-résultant de deux \(\mathbb{F}_q\)-polynômes linéaire. Alors on démontre la loi de réciprocité des puissances \(q-1\)-èmes.

Keywords: Power residues, function fields., reciprocity law

AMS Subject Classification: Power residues; reciprocity, Drinfeld modules; higher-dimensional motives; etc., Arithmetic theory of polynomial rings over finite fields 11A15, 11G09, 11T55

PDF(click to download): Polynomial Power Residue Symbols and $q$-resultants

Cauchy Problem on Two Characteristic Hypersurfaces for the Einstein-Vlasov Scalar Field Equations in Temporal Gauge

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (2) 2017, pp. 45-59
Vol.39 (2) 2017
Marcel Dossa; Jean Baptiste Patenou Details
(Received: 2015-12-01 , Revised: 2016-05-16 )
(Received: 2015-12-01 , Revised: 2016-05-16 )

Marcel Dossa,University of Yaounde I, Faculty of Sciences, Department of Mathematics, P. O. Box. 812, Yaounde, Cameroon; e-mail: marceldossa@yahoo.fr

Jean Baptiste Patenou,University of Dschang, Faculty of Sciences, Department of Mathematics and Computer Science, P. O. Box. 67 Dschang, Cameroon
e-mail: jeanbaptiste.patenou@univ-dschang.org,jpatenou@yahoo.fr

Abstract/Résumé:

In this paper, we consider the initial value problem for the Einstein-Vlasov scalar field equations in temporal gauge, where the initial data are prescribed on two characteristic smooth intersecting hypersurfaces. From a suitable choice of some free data, the initial data constraints’s problem is solved globally, then the evolution problem relative to the deduced initial data is solved locally in time.

Dans cet article, on considère le problème de Cauchy pour les équations d’Einstein-Vlasov-Champ scalaire en jauge temporelle, dans le cas où les données initiales sont préscrites sur deux hypersurfaces caractéristiques régulières sécantes. A partir d’un choix judicieux de certaines données indépendantes, le problème des contraintes initiales est globalement résolu, et ensuite le problème de l’évolution relatif aux données initiales déduites est résolu localement dans le temps.

Keywords: Characteristic Cauchy problem, general relativity, geometric-transport scalar field equations, initial data constraints's problem, temporal gauge, well posedness

AMS Subject Classification: PDE in relativity, Einstein's equations (general structure; canonical formalism; Cauchy problems) 35Q75, 83C05

PDF(click to download): Cauchy Problem on Two Characteristic Hypersurfaces for the Einstein-Vlasov Scalar Field Equations in Temporal Gauge

Absence of Non-commutative Matrix Observables for q-State Potts Models

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (1) 2017, pp. 36-44
Vol.39 (1) 2017
James McVittie Details
(Received: 2015-12-28 , Revised: 2016-03-02 )
(Received: 2015-12-28 , Revised: 2016-03-02 )

James McVittie,The Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, QC, Canada H3A 0B9; e-mail: james.mcvittie@mail.mcgill.ca

Abstract/Résumé:

This article is an expository work introducing the subject of lattice models in statistical physics and the types of observables that can be used to prove convergence, as well as a proof for the q-state Potts model showing that non-commutative matrix observables do not exist.

Cet article est une introduction au sujet des modèles sur réseau en physique statistique et les types d’observables qui peuvent être utilisées pour démontrer la convergence, et aussi une démonstration qu’il n’existe pas d’observable matricielle non-commutative pour le modèle “q-state Potts”.

Keywords: Ising model, Potts model, lattice, matrix, noncommutative, observable

AMS Subject Classification: Dynamics of random walks; random surfaces; lattice animals; etc., Dynamics of disordered systems (random Ising systems; etc.) 82C41, 82C44

PDF(click to download): Absence of Non-commutative Matrix Observables for q-State Potts Models

Comments Related to Infinite Wedge Representations

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (1) 2017, pp. 13-35
Vol.39 (1) 2017
Nathan Grieve Details
(Received: 2016-06-30 , Revised: 2016-11-07 )
(Received: 2016-06-30 , Revised: 2016-11-07 )

Nathan Grieve,Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB,Canada E3B 5A3; e-mail: n.grieve@unb.ca

Abstract/Résumé:

We study the infinite wedge representation and show how it is related to the universal central extension of \(g[t,t^{-1}]\), the loop algebra of a complex semi-simple Lie algebra \(g\). We also give an elementary proof of the boson-fermion correspondence. Our approach to proving this result is based on a combinatorial construction combined with an application of the Murnaghan-Nakayama rule.

Nous étudions l’algèbre extérieure en dimension infinie et montrons comment elle est reliée à l’extension centrale universelle de \(g[t,\!t^{-1}]\), l’algèbre de lacets sur une algèbre de Lie \(g\) semi-simple complexe. De plus, nous donnons une preuve élémentaire de la correspondance boson-fermion. Pour ce faire, nous utilisons une construction combinatoire, ainsi que la règle de Murnaghan-Nakayama.

Keywords: Boson-fermion correspondence, Infinite wedge representation, Murnaghan-Nakayama rule

AMS Subject Classification: Symmetric functions, Completely integrable systems; integrability tests; bi-Hamiltonian structures; hierarchies (KdV; KP; Toda; etc.) 05E05, 37K10

PDF(click to download): Comments Related to Infinite Wedge Representations

Composition Series for Degenerate Principal Series of ${GL}(n)$

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (1) 2017, pp. 1-12
Vol.39 (1) 2017
Dmitry Gourevitch Details
(Received: 2015-11-01 , Revised: 2016-01-31 )
(Received: 2015-11-01 , Revised: 2016-01-31 )

Dmitry Gourevitch,The Incumbent of Dr. A. Edward Friedmann Career Development Chair in Mathematics, Department of Mathematics, Weizmann Institute of Science, POB 26, Rehovot 76100, Israel; e-mail: dimagur@weizmann.ac.il

Abstract/Résumé:

In this note we consider representations of the group \(GL(n,F)\), where \(F\) is the field of real or complex numbers or, more generally, an arbitrary local field, in the space of equivariant line bundles over Grassmannians over the same field \(F\). We study reducibility and composition series of such representations.

Similar results were obtained already in [4,20,31], but we give a short uniform proof in the general case, using the tools from [7]. We also indicate some applications to cosine transforms in integral geometry.

Dans cette note on considère des représentations du groupe \(GL(n,F)\), où \(F\) est le corps des nombres réels ou complexes ou plus généralement, un corps local arbitraire, dans l’espace de fibres en droites équivariants sur des Grassmanniennes sur le même corps \(F\). On étudie la réductibilité et la suite de composition de telles représentations.

Des résultats similaires ont déjà été obtenus dans [4,20,31], mais nous présentons une courte preuve dans le cas général en utilisant les outils de [7]. On donne aussi quelques applications aux transformées en cosinus en géométrie intégrale.

Keywords: Bernstein-Zelevinsky derivative, Degenerate principal series, Line bundle over Grassmannian, alpha-cosine transform

AMS Subject Classification: Analysis on real and complex Lie groups, Representations of Lie and linear algebraic groups over local fields, Homogeneous spaces, Integral transforms in distribution spaces, Integral geometry; differential forms; currents; etc. 22E30, 22E50, 22F30, 46F12, 53C65

PDF(click to download): Composition Series for Degenerate Principal Series of ${GL}(n)$

Group Actions on Filtered Modules and Finite Determinacy. Finding Large Submodules in the Orbit by Linearization

C. R. Math. Rep. Acad. Sci. Canada Vol. 38 (4) 2016, pp. 113-155
Vol.38 (4) 2016
Genrich Belitskii; Dmitry Kerner Details
(Received: 2015-07-20 , Revised: 2016-01-27 )
(Received: 2015-07-20 , Revised: 2016-01-27 )

Genrich Belitskii,Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be'er Sheva 84105, Israel; e-mail: genrich@math.bgu.ac.il

Dmitry Kerner,Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be'er Sheva 84105, Israel; e-mail dmitry.kerner@gmail.com

Abstract/Résumé:

Let \(M\) be a module over a local ring \(R\) and a group action \(G\circlearrowright M\), not necessarily \(R\)-linear. To understand how large is the \(G\)-orbit of an element \(z\in M\) one looks for the large submodules of \(M\) lying in \(Gz\). We provide the corresponding (necessary/sufficient) conditions in terms of the tangent space to the orbit, \(T_{(Gz,z)}\).

This question originates from the classical finite determinacy problem of Singularity Theory. Our treatment is rather general, in particular we extend the classical criteria of Mather (and many others) to a broad class of rings, modules and group actions.

When a particular ‘deformation space’ is prescribed, \(\Sigma\subseteq M\), the determinacy question is translated into the properties of the tangent spaces, \(T_{(Gz,z)}\), \(T_{(\Sigma,z)}\), and in particular to the annihilator of their quotient, \(ann\,{T_{(\Sigma,z)}}/{T_{(Gz,z)}}\).

Etant donné une action d’un groupe sur un module, \(G\circlearrowright M\), et un élément \(z\in M\), on étudie le plus grand sous-module de \(M\) contenu dans l’orbite \(Gz\). On donne des conditions nécessaires et suffisantes décrivant ce module en termes de l’espace tangent a l’orbite, \(T_{(Gz,z)}\). Cela prolonge les critères classiques de la théorie des singularités à une large classe d’anneaux, modules, et actions de groupes.

Keywords: Group actions, finite determinancy, matrix families, matrix singularities, modules over local rings, open orbits, sufficiency of jets

AMS Subject Classification: Deformations of singularities, Canonical forms; reductions; classification, Normal families of functions; mappings, Classification; finite determinacy of map germs, Normal forms 14B07, 15A21, 32A19, 58K40, 58K50

PDF(click to download): Group Actions on Filtered Modules and Finite Determinacy. Finding Large Submodules in the Orbit by Linearization

Cartan-Remez Type Inequalities for Analytic and Plurisubharmonic Functions

C. R. Math. Rep. Acad. Sci. Canada Vol. 38 (3) 2016, pp. 99-112
Vol.38 (3) 2016
Alexander Brudnyi Details
(Received: 2015-10-29 , Revised: 2015-11-30 )
(Received: 2015-10-29 , Revised: 2015-11-30 )

Alexander Brudnyi,Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, T2N 1N4; e-mail: albru@math.ucalgary.ca

Abstract/Résumé:

Recently there has been a considerable interest in Cartan-Remez type inequalities in connection with various problems of analysis. In this paper we formulate and prove several basic results in this area and describe some of their applications. The text is based on the material of the minicourse given by the author at the workshop on Analytic Microlocal Analysis held at the Northwestern University in May 2013.

Récemment, il y a eu un intérêt considérable aux inégalités de types de Cartan-Remez dans le cadre de divers problèmes de l’analyse. Dans cet article, nous formulons et nous démontrons plusieurs résultats de base dans ce domaine et nous décrivons certaines de leurs applications. Le texte est basé sur le matériau de la mini-course donnée par l’auteur à l’atelier sur l’analyse analytique microlocale tenu à l’Université Northwestern en mai 2013.

Keywords: Cartan-Remez inequality, Hilbert 16th problem, Jensen inequality, holomorphic function, subharmonic function

AMS Subject Classification: Inequalities in approximation (Bernstein; Jackson; Nikol\cprime ski\u\i-type inequalities), Multidimensional problems (should also be assigned at least one other classification number in this section) 41A17, 41A63

PDF(click to download): Cartan-Remez Type Inequalities for Analytic and Plurisubharmonic Functions

Divergent Series: Past, Present, Future …

C. R. Math. Rep. Acad. Sci. Canada Vol. 38 (3) 2016, pp. 85-98
Vol.38 (3) 2016
Christiane Rousseau Details
(Received: 2015-02-11 , Revised: 2015-10-11 )
(Received: 2015-02-11 , Revised: 2015-10-11 )

Christiane RousseauDepartement de mathematiques et de statistique and CRM, Universite de Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC , H3C 3J7, Canada;
e-mail: rousseac@dms.umontreal.ca

Abstract/Résumé:

The paper presents some reflections of the author on divergent series and their role and place in mathematics over the centuries. The point of view presented here is limited to differential equations and dynamical systems.

L’article présente quelques réflexions de l’auteure sur les séries divergentes, et leur rôle et place en mathématiques au courant des siècles. Le point de vue présenté ici est limité aux équations différentielles et aux systèmes dynamiques.

Keywords: Borel summability, Divergent series, Euler dierential equation, Stokes phenomenon, resummation

AMS Subject Classification: Asymptotics; summation methods, Stokes phenomena and connection problems (linear and nonlinear) 34M30, 34M40

PDF(click to download): Divergent Series: Past, Present, Future ...

On Dependence of Rational Points on Elliptic Curves

C. R. Math. Rep. Acad. Sci. Canada Vol. 38 (2) 2016, pp. 75-84
Vol.38 (2) 2016
Mohammad Sadek Details
(Received: 2015-04-15 , Revised: 2015-08-18 )
(Received: 2015-04-15 , Revised: 2015-08-18 )

Mohammad Sadek,Department of Mathematics and Actuarial Science, American University in Cairo, Cairo, Egypt; e-mail: mmsadek@aucegypt.edu

Abstract/Résumé:

Let \(E\) be an elliptic curve defined over \(Q\). Let \(\Gamma\) be a subgroup of \(E(Q)\) and \(P\in E(Q)\). In \cite{Arithmetic}, it was proved that if \(E\) has no nontrivial rational torsion points, then \(P\in\Gamma\) if and only if \(P\in \Gamma\) mod \(p\) for finitely many primes \(p\). In this note, assuming the General Riemann Hypothesis, we provide an explicit upper bound on these primes when \(E\) does not have complex multiplication and either \(E\) is a semistable curve or \(E\) has no exceptional prime.

Soit \(E\) une courbe elliptique définie sur \(Q\). Soit \( \Gamma\) un sous-groupe de \( E(Q) \) et \( P \in E (Q) \). Dans \cite{Arithmetic}, il on a prouvé que si \( E \) n’a pas de points de torsion rationels non trivials, alors \( P \in \Gamma \) si et seulement si \( P \in \Gamma \) mod \( p \) pour un nombre fini de nombres premiers \( p \). Dans cette note, supposant l’hypothèse général de Riemann, nous fournissons une borne-supérieure explicite sur ces nombres premiers quand \( E \) n’a pas de multiplication complexe et soit \( E \) est une courbe semi-stable soit \( E \) n’a aucun nombre premier exceptionnel.

Keywords: elliptic curves, linear dependence, rational points

AMS Subject Classification: Elliptic curves over global fields, Rational points 11G05, 14G05

PDF(click to download): On Dependence of Rational Points on Elliptic Curves

Analytic Compactifications of $C^2$ Part I—Curvettes at Infinity

C. R. Math. Rep. Acad. Sci. Canada Vol. 38 (2) 2016, pp. 41-74
Vol.38 (2) 2016
Pinaki Mondal Details
(Received: 2015-02-10 , Revised: 2015-07-09 )
(Received: 2015-02-10 , Revised: 2015-07-09 )

Pinaki Mondal,The School of Mathematics, Physics & Technology, College of The Bahamas, Nassau, Bahamas; e-mail: pinakio@gmail.com

Abstract/Résumé:

We study normal analytic compactifications of \(C^2\) and describe their singularities and configuration of curves at infinity, in particular improving and generalizing results of Brenton (1973). As a by product we give new proofs of Jung’s theorem on polynomial automorphisms of \(C^2\) and Remmert and Van de Ven’s result that \(P^2\) is the only smooth analytic compactification of \(C^2\) for which the curve at infinity is irreducible. We also give a complete answer to the question of existence of compactifications of \(C^2\) with prescribed divisorial valuations at infinity. In particular, we show that a valuation on \(C(x,y)\) centered at infinity determines a compactification of \(C^2\) iff it is positively skewed in the sense of Favre and Jonsson (2004).

Nous étudions les compactifications analytiques normales de \(C^2\) et décrivons leurs singularités et la configuration des courbes à l’infini, en particulier ameliorant et généralisant les résultats de Brenton (1973). Comme un sous-produit, nous donnons de nouvelles preuves du théorème de Jung sur les automorphismes polynomiaux de \(C^2 \) et le résultat de Remmert et Van de Ven que \(P^2\) est la seule compactification analytique lisse de \(C^2\) pour laquelle la courbe à l’infini est irréductible. Nous donnons aussi une réponse complète à la question de l’existence de compactifications de \(C^2 \) avec des valorisations divisorielles préscrites à l’infini. En particulier, nous montrons qu’une évaluation sur \(C(x,y) \) centrée à l’infini détermine une compactification de \(C^2\) ssi elle est positivement asymétrique dans le sens de Favre and Jonsson (2004).

Keywords: Compactifications of $C^2$, curvettes, discreet valuations., polynomial automorphisms

AMS Subject Classification: Rational and ruled surfaces, , Normal analytic spaces 14J26, 14M27, 32C20

PDF(click to download): Analytic Compactifications of $C^2$ Part I---Curvettes at Infinity

Résolution du $\partial \bar{\partial}$ pour les courants prolongeables définis sur la boule euclidienne de $C^n$

C. R. Math. Rep. Acad. Sci. Canada Vol. 38 (1) 2016, pp. 36-40
Vol.38 (1) 2016
Salomon Sambou; Eramane Bodian; Dian Diallo Details
(Received: 2014-12-20 , Revised: 2015-05-11 )
(Received: 2014-12-20 , Revised: 2015-05-11 )

Salomon Sambou,Université Assane SECK de Ziguinchor, Sénégal; email: ssambou@univ-zig.sn

Eramane Bodian,Université Assane SECK de Ziguinchor, Sénégal; email: eramane20era@yahoo.fr

Dian Diallo,Université Assane SECK de Ziguinchor, Sénégal; email: diandiallo1086@yahoo.fr

Abstract/Résumé:

We solve the \(\partial \bar{\partial}\)-problem for extendable currents defined on the euclidean ball of \({C}^n\).

On résout le \(\partial \bar{\partial}\) pour les courants prolongeables définis dans la boule euclidienne de \({C}^n\).

Keywords: $\partial \bar{\partial}$, Courant prolongeable, cohomologie de De Rham

AMS Subject Classification: Analytical consequences of geometric convexity (vanishing theorems; etc.) 32F32

PDF(click to download): Résolution du $partial bar{partial}$ pour les courants prolongeables définis sur la boule euclidienne de $C^n$

Sharp Maximal Function Estimates and Boundedness for the Toeplitz Type Operator Associated to a Multiplier Operator

C. R. Math. Rep. Acad. Sci. Canada Vol. 38 (1) 2016, pp. 16-35
Vol.38 (1) 2016
Dazhao Chen Details
(Received: 2014-10-01 , Revised: 2015-04-01 )
(Received: 2014-10-01 , Revised: 2015-04-01 )

Dazhao Chen,Department of Science and Information Science, Shaoyang University, Hunan Shaoyang, 422000, P. R. of China; e-mail: chendazhao27@sina.com

Abstract/Résumé:

In this paper, we establish sharp maximal function estimates for the Toeplitz type operator associated to a certain multiplier operator. As an application, we obtain the boundedness of the operator on Lebesgue, Morrey and Triebel-Lizorkin spaces.

Dans cet article, on établit des estimations de la fonction maximale optimale pour l’opérateur de type Toeplitz associé à un certain opérateur multiplicateur. Comme application, nous obtenons le caractère borné de l’opérateur sur les espaces de Lebesgue, de Morrey et de Triebel-Lizorkin.

Keywords: BMO, Lipschitz function, Morrey space, Toeplitz type operator, Triebel-Lizorkin space, multiplier operator, sharp maximal function

AMS Subject Classification: Singular integrals (Calder__n-Zygmund; etc.), Maximal functions; Littlewood-Paley theory 42B20, 42B25

PDF(click to download): Sharp Maximal Function Estimates and Boundedness for the Toeplitz Type Operator Associated to a Multiplier Operator

Fermionic Realization of Two-Parameter Quantum Affine Algebra $U_{r;s}(C_l^{(1)})$

C. R. Math. Rep. Acad. Sci. Canada Vol. 38 (1) 2016, pp. 1-15
Vol.38 (1) 2016
Naihuan Jing; Honglian Zhang Details
(Received: 2014-11-08 , Revised: 2015-02-27 )
(Received: 2014-11-08 , Revised: 2015-02-27 )

Naihuan Jing,School of Mathematical Sciences, South China University of Technology, Guangzhou 510640,
China and Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA; e-mail: jing@math.ncsu.edu

Honglian Zhang,Department of Mathematics, Shanghai University, Shanghai 200444, China; e-mail: hlzhangmath@shu.edu.cn

Abstract/Résumé:

We construct a Fock space representation and the action of the two-parameter quantum algebra \(U_{r,s}(\frak{gl}_{\infty})\) using extended Young diagrams. In particular, we obtain an integrable representation of the two-parameter quantum affine algebra of type \(C_n^{(1)}\) which is a two-parameter generalization of Kang-Misra-Miwa’s realization.

Nous construisons une représentation sur un espace de Fock de l’algèbre quantique à deux paramètres \(U_{r,s}(\frak{gl}_{\infty})\) en utilisant les diagrammes de Young prolongés. En particulier, on obtient une représentation intégrable de l’algèbre quantique affine à deux paramètres de type \(C_n^{(1)}\) qui est une généralization à deux paramètres de la réalization de Kang-Misra-Miwa.

Keywords: Fock space, Two-parameter quantum ane algebra, Young diagram, fermionic realization

AMS Subject Classification: Quantum groups (quantized enveloping algebras) and related deformations 17B37

PDF(click to download): Fermionic Realization of Two-Parameter Quantum Affine Algebra $U_{r;s}(C_l^{(1)})$

Laplacians for Derived Graphs of Regular Kähler Graphs

C. R. Math. Rep. Acad. Sci. Canada Vol. 37 (4) 2015, pp. 142-157
Vol.37 (4) 2015
Yaermaimaiti Tuerxunmaimaiti; Toshiaki Adachi Details
(Received: 2014-07-13 , Revised: 2015-07-15 )
(Received: 2014-07-13 , Revised: 2015-07-15 )

Yaermaimaiti Tuerxunmaimaiti,Division of Mathematics and Mathematical Science, Nagoya Institute of
Technology, Nagoya 466-8555, Japan; e-mail: yarimamat@gmail.com

Toshiaki Adachi,Department of Mathematics, Nagoya Institute of Technology, Nagoya 466-8555, Japan; e-mail: adachi@nitech.ac.jp

Abstract/Résumé:

We consider \((p,q)\)-step adjacency on a Kähler graph which is compounded from a principal graph and an auxiliary graph. We attach probabilistic weights to \((p,q)\)-step paths so that these paths show trajectories under the influence of a magnetic field of strength \(q/p\) on this graph. We study eigenvalues of Laplacians corresponding to \((p,q)\)-step paths on some regular Kähler graphs and give examples of pairs of regular Kähler graphs whose Laplacians for arbitrary pairs \((p,q)\) of positive integers have the same eigenvalues.

On considère la relation de contiguité à un pas \((p,q)\) près sur un graphe kählerien qui se constitue d’un graphe principal et un graphe auxiliaire. On attache des poids probabilistiques aux sentiers dans un tel graphe composés de pas \((p,q)\) de sorte que ces sentiers montrent des trajectoires sous l’influence d’un champs magnétique de force \(q/p\) sur le graphe. On étudie le spectre de l’opérateur laplacien correspondant aux sentiers aux pas \((p,q)\) sur certains graphes kähleriens regulières. On donne un example de deux graphes différents dont les opérateurs laplaciens ont le même spectre pour toute paire \((p,q)\).

Keywords: (p; q)-Laplacians, Kähler graphs, complement graphs, derived graphs, isospectral, products of graphs

AMS Subject Classification: Graphs and matrices, Hermitian and K_õhlerian manifolds 05C50, 53C55

PDF(click to download): Laplacians for Derived Graphs of Regular Kähler Graphs