46L80 — 16 articles found.

Generalized Tracially Approximated C*-algebras

C. R. Math. Rep. Acad. Sci. Canada Vol. 45 (2) 2023, pp. 13–36
Vol.45 (2) 2023
George A. Elliott, FRSC; Qingzhai Fan; Xiaochun Fang Details
(Received: 2023-06-12 , Revised: 2023-07-03 )
(Received: 2023-06-12 , Revised: 2023-07-03 )

George A. Elliott, Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4; e-mail: elliott@math.toronto.edu

Qingzhai Fan , Department of Mathematics, Shanghai Maritime University, Shangha, China 201306; e-mail: fanqingzhai@fudan.edu.cn,qzfan@shmtu.edu.cn

Xiaochun Fang, Department of Mathematics, Tongji University, Shanghai, China 200092; e-mail: xfang@tongji.edu.cn

Abstract/Résumé:

In this paper, we introduce some classes of generalized tracial approximation C*-algebras. Consider the class of unital C*-algebras which are tracially 𝒵-absorbing (or have tracial nuclear dimension at most n, or have the property SP, or are m-almost divisible). Then A is tracially 𝒵-absorbing (respectively, has tracial nuclear dimension at most n, has the property SP, is weakly (n, m)-almost divisible) for any simple unital C*-algebra A in the corresponding class of generalized tracial approximation C*-algebras. As an application, let A be an infinite-dimensional unital simple C*-algebra, and let B be a centrally large subalgebra of A. If B is tracially 𝒵-absorbing, then A is tracially 𝒵-absorbing. This result was obtained by Archey, Buck, and Phillips in Archey et al. (2018).

On introduit la notion d’approximation traciale généralisée d’une C*-algèbre par des C*-algèbres dans une class donnée. Cette notion généralise la notion de Lin d’approximation triviale simple, et aussi la notion d’Archey et de Phillips de centralement grande sousalgèbre, deux notions qui se sont démontrées très importantes.

Keywords: Cuntz Semigroup, C∗-algebras, tracial approximation

AMS Subject Classification: General theory of $C^*$-algebras, Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory 46L05, 46L35, 46L80

PDF(click to download): Generalized Tracially Approximated C*-algebras

K-Theory and Traces

C. R. Math. Rep. Acad. Sci. Canada Vol. 44 (1) 2022, pp. 1-15
Vol.44 (1) 2022
George A. Elliott Details
(Received: 2021-09-16 , Revised: 2021-12-19 )
(Received: 2021-09-16 , Revised: 2021-12-19 )

George A. Elliott, Department of Mathematics, University of Toronto, Toronto, Canada M5S 2E4; e-mail: elliott@math.toronto.edu

Abstract/Résumé:

It is shown that for a unital C*-algebra, what is sometimes referred to as the Elliott invariant—loosely speaking, K-theory and traces— i.e., the order-unit K\(_0\)-group, the K\(_1\)-group, and the trace simplex, paired in the natural way with K\(_0\), can be expressed purely in terms of K-theory, with the trace simplex and its pairing with K\(_0\) recoverable in a simple way (using polar decomposition) from algebraic K\(_1\), defined as in the purely algebraic context using invertible elements rather than just unitaries.

L’invariant naïf d’Elliott, qui est à la base de la classification complète récente d’une énorme classe de C*-algèbres simples (celles qui sont de dimension nucléaire finie, qui sont séparables, et qui satisfont à l’UCT), peut s’exprimer entièrement dans le cadre de K-théorie algébrique.

Keywords: Algebraic K1-group of a C*-algebra encodes bounded traces

AMS Subject Classification: None of the above; but in this section, $K_0$ as an ordered group; traces, General theory of $C^*$-algebras, Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory 19B99, 19K14, 46L05, 46L35, 46L80

PDF(click to download): K-Theory and Traces

A Classification of Finite Simple Amenable Z-stable C*-algebras, II: C*-algebras with Rational Generalized Tracial Rank One

C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (4) 2020, pp. 451-539
Vol.42 (4) 2020
Guihua Gong; Huaxin Lin; Zhuang Niu Details
(Received: 2020-09-20 , Revised: 2021-01-31 )
(Received: 2020-09-20 , Revised: 2021-01-31 )

Guihua Gong, Department of Mathematics, Hebei Normal University, Shijiazhuang, Hebei 050016, China
and Department of Mathematics, University of Puerto Rico, Rio Piedras, PR 00936, USA; e-mail: ghgong@gmail.com

Huaxin Lin, Department of Mathematics, East China Normal University, Shanghai 200062, China and
(Current) Department of Mathematics, University of Oregon, Eugene, Oregon, 97402, USA; e-mail: hlin@uoregon.edu

Zhuang Niu, Department of Mathematics, University of Wyoming, Laramie, WY, USA, 82071; e-mail: zniu@uwyo.edu,

Abstract/Résumé:

A classification theorem is obtained for a class of unital simple separable amenable \({\cal Z}\)-stable C*-algebras which exhausts all possible values of the Elliott invariant for unital stably finite simple separable amenable \({\cal Z}\)-stable C*-algebras. Moreover, it contains all unital simple separable amenable C*-algebras which satisfy the UCT and have finite rational tracial rank.

Dans cet article et le précédent on donne une classification complète, au moyen de l’invariant d’Elliott, d’une sous-classe de la classe des C*-algèbres simples, moyennables, séparables, à élément unité, absorbant l’algèbre de Jiang-Su, et satisfaisant au UCT, qui épuise l’ensemble des valeurs possibles de l’invariant pour cette class. La partie I réalise une grande partie de ce projet, et la partie II l’achève.

Keywords: Classication of Simple C*-algebras

AMS Subject Classification: General theory of $C^*$-algebras, Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory 46L05, 46L35, 46L80

PDF(click to download): A Classification of Finite Simple Amenable Z-stable C*-algebras, II: C*-algebras with Rational Generalized Tracial Rank One

A Classification of Finite Simple Amenable Z-stable C*-algebras, I: C*-algebras with Generalized Tracial Rank One

C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (3) 2020, pp. 63-450
Vol.42 (3) 2020
Guihua Gong; Huaxin Lin; Zhuang Niu Details
(Received: 2020-09-20 , Revised: 2021-01-31 )
(Received: 2020-09-20 , Revised: 2021-01-31 )

Guihua Gong, Department of Mathematics, Hebei Normal University, Shijiazhuang, Hebei 050016, China and Department of Mathematics, University of Puerto Rico, Rio Piedras, PR 00936, USA; e-mail: ghgong@gmail.com

Huaxin Lin, Department of Mathematics, East China Normal University, Shanghai 200062, China and (Current) Department of Mathematics, University of Oregon, Eugene, Oregon, 97402, USA; e-mail: hlin@uoregon.edu

Zhuang Niu, Department of Mathematics, University of Wyoming, Laramie, WY, USA, 82071; e-mail: zniu@uwyo.edu

Abstract/Résumé:

A class of C*-algebras, to be called those of generalized tracial rank one, is introduced. A second class of unital simple separable amenable C*-algebras, those whose tensor products with UHF-algebras of infinite type are in the first class, to be referred to as those of rational generalized tracial rank one, is proved to exhaust all possible values of the Elliott invariant for unital finite simple separable amenable \({\cal Z}\)-stable C*-algebras. A number of results toward the classification of the second class are presented including an isomorphism theorem for a special sub-class of the first class, leading to the general classification of all unital simple s with rational generalized tracial rank one in Part II.

Dans cet article et le prochain, on donne une classification complète, au moyen de l’invariant d’Elliott, d’une sous-classe de la classe des C*-algèbres simples, moyennables, séparables, à élément unité, absorbant l’algèbre de Jiang-Su, et satisfaisant au UCT, qui épuise l’ensemble des valeurs possibles de l’invariant pour cette class. La partie I réalise une grande partie de ce projet, et la partie II l’achève.

Keywords: Classification of simple C*-algebras

AMS Subject Classification: General theory of $C^*$-algebras, Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory 46L05, 46L35, 46L80

PDF(click to download): A Classification of Finite Simple Amenable Z-stable C*-algebras, I: C*-algebras with Generalized Tracial Rank One

Certain Properties of Tracial Approximation ${\rm C^*}$-Algebras

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (4) 2018, pp. 104-133
Vol.40 (4) 2018
George A. Elliott, FRSC; Qingzhai Fan; Xiaochun Fang Details
(Received: 2019-04-07 )
(Received: 2019-04-07 )

George A. Elliott, FRSC,Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4; e-mail: elliott@math.toronto.edu,

Qingzhai Fan,Department of Mathematics, Shanghai Maritime University, Shanghai, China 201306; e-mail: fanqingzhai@fudan.edu.cn,qzfan@shmtu.edu.cn

Xiaochun Fang,Department of Mathematics, Tongji University, Shangha, China 200092; e-mail: xfang@mail.tongji.edu.cn

Abstract/Résumé:

We show that the following properties of the \({\rm C^*}\)-algebras in a class \(\Omega\) are inherited by simple unital \({\rm C^*}\)-algebras in the class \({\rm TA}\Omega\): \((1)\) \(\beta\)-comparison (\(1\leq \beta < \infty\)), \((2)\) \(n\)-comparison, \((3)\) trace \(\mathcal{Z}\)– absorption, \((4)\) \(m\)-almost divisibility, \((5)\) \((n,m) ~(m\neq 0)\) comparison, and \((6)\) tracial approximate divisibility. As an application, every unital simple \({\rm C^*}\)-algebra with tracial topological rank at most \(k\) has the property of \(k\)-comparison. Also as an application, let \(A\) be an infinite-dimensional simple unital \({\rm C^*}\)-algebra such that \(A\) has one of the above-listed properties. Suppose that \(\alpha: G\to {\rm Aut}(A)\) is an action of a finite group \(G\) on \(A\) which has the tracial Rokhlin property. Then the crossed product \({\rm C^*}\)-algebra \({\rm C^*}( G, A,\alpha)\) also has the property under consideration.

On considère plusieurs propriétés d’une C*-algèbre simple à élément unité qui sont héritées par approximation traciale. Comme application on démontre que ces propriétés sont aussi héritées par la C*-algèbre produit croisé associée à une action d’un groupe fini qui possède la propriété de Rokhlin traciale.

Keywords: C*-algebra, Cuntz Semigroup, tracial approximation

AMS Subject Classification: General theory of $C^*$-algebras, Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory 46L05, 46L35, 46L80

PDF(click to download): Certain Properties of Tracial Approximation ${C^*}$-Algebras

Uniqueness of the Index Map in Real K-theory

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (4) 2018, pp. 101-103
Vol.40 (4) 2018
Ralf Meyer Details
(Received: 2019-03-15 , Revised: 2019-04-01 )
(Received: 2019-03-15 , Revised: 2019-04-01 )

Ralf Meyer,Mathematisches Institut, Georg-August Universitaet Goettingen, Bunsenstrasse 3-5, 37073 Goettingen, Germany; email: rmeyer2@uni-goettingen.de

Abstract/Résumé:

The index map in topological K-theory for real Banach algebra extensions is a natural transformation from the first K-theory of the quotient to the zeroth K-theory of the ideal. We show that any such natural transformation is an integer multiple of the index map.

L’application index dans la K-théorie des extensions d’algèbres de Banach réelles est une transformation naturelle entre le premier K-groupe de l’algèbre quotient et le zéroième K-groupe de l’idéal. On démontre qu’une telle transformation naturelle doit être un multiple intégral de l’application index.

Keywords: Index map, real K-theory

AMS Subject Classification: Index theory, K-theory and operator algebras -including cyclic theory 19K56, 46L80

PDF(click to download): Uniqueness of the Index Map in Real K-theory

Uniqueness of the Index Map in Banach Algebra K-theory, II

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (3) 2018, pp. 91-100
Vol.40 (3) 2018
George A. Elliott Details
(Received: 2018-09-01 , Revised: 2018-09-01 )
(Received: 2018-09-01 , Revised: 2018-09-01 )

George A. Elliott,Department of Mathematics, University of Toronto, Toronto, Canada M5S 2E4; e-mail: elliott@math.toronto.edu

Abstract/Résumé:

It is shown that the index map in the theory of real Banach algebras is unique as a natural transformation, up to an integral multiple, and modulo a (unique) two-torsion “ghost” map arising from the order-two K\(_1\)-group of the Banach algebra \({\mathbb R}\) (of real numbers). (In the earlier paper this was shown for complex Banach algebras, of course without the “ghost” map, but in way—using Bott periodicity to pass to the opposite parity—that is not available for real Banach algebras. The present approach yields a new proof in the complex case.)

On démontre que l’application index dans la K-théorie des algèbres de Banach réelles (ou complexes) est essentiellment unique.

Keywords: K-theory, index theory

AMS Subject Classification: Index theory, K-theory and operator algebras -including cyclic theory 19K56, 46L80

PDF(click to download): Uniqueness of the Index Map in Banach Algebra K-theory, II

A Survey of the Preservation of Symmetries by the Dual Gromov-Hausdorff Propinquity

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (3) 2018, pp. 65-90
Vol.40 (3) 2018
Frederic Latremoliere Details
(Received: 2018-05-05 , Revised: 2018-05-05 )
(Received: 2018-05-05 , Revised: 2018-05-05 )

Frederic Latremoliere,Department of Mathematics, University of Denver, Denver CO 80208; e-mail: frederic@math.du.edu

Abstract/Résumé:

We survey the symmetry preserving properties for the dual propinquity, under natural non-degeneracy and equicontinuity conditions. These properties are best formulated using the notion of the covariant propinquity when the symmetries are encoded via the actions of proper monoids and groups. We explore the issue of convergence of Cauchy sequences for the covariant propinquity, which captures, via a compactness result, the fact that proper monoid actions can pass to the limit for the dual propinquity.

Nous étudions les propriétés de conservation des symmétries des espaces quantiques pour la proximité duale, sous des conditions naturelles d’équicontinuité et de non dégénérescence. Ces propriétés sont exprimées naturellement dans le language de la proximité covariante, qui permet de discuter la convergence d’actions de groupes et semigroupes sur les espaces quantiques. Nous explorons le problème de la convergence des suites de Cauchy pour la proximité covariante, qui capture, grâce a un théoreme de compacité, le fait que les actions de monoides propres passent à la limite pour la proximité duale.

Keywords: C*-dynamical systems, Gromov-Hausdor convergence, Gromov-Hausdor distance for proper monoids, Lip-norms, Monge- Kantorovich distance, Noncommutative metric geometry, proper monoids, quantum metric spaces

AMS Subject Classification: K-theory and operator algebras -including cyclic theory, Noncommutative geometry (__ la Connes) 46L80, 58B34

PDF(click to download): A Survey of the Preservation of Symmetries by the Dual Gromov-Hausdorff Propinquity

The Rieffel Projection Via Groupoids

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (2) 2018, pp. 55-60
Vol.40 (2) 2018
George A. Elliott; Dickson Wong Details
(Received: 2018-05-05 , Revised: 2018-05-05 )
(Received: 2018-05-05 , Revised: 2018-05-05 )

George A. Elliott,Department of Mathematics, University of Toronto, Toronto, Canada M5S 2E4; e-mail: elliott@math.toronto.edu

Dickson Wong,Department of Mathematics, University of Toronto, Toronto, Canada M5S 2E4; e-mail: dickson.wong@mail.utoronto.ca

Abstract/Résumé:

An elementary groupoid construction is shown to underlie Rieffel’s Hilbert module construction of a non-trivial projection in the irrational rotation C*-algebra.

Une construction élémentaire de groupoïde se révèle à la base de la construction de Rieffel à module de Hilbert d’un projecteur non-trivial dans la C*-algèbre d’une rotation irrationnelle.

Keywords: Irrational rotation algebra, Rieffel projection, groupoid construction

AMS Subject Classification: General theory of $C^*$-algebras, K-theory and operator algebras -including cyclic theory, Noncommutative topology 46L05, 46L80, 46L85

PDF(click to download): The Rieffel Projection Via Groupoids

Cubic and Hexic Integral Transforms for Locally Compact Abelian Groups

C. R. Math. Rep. Acad. Sci. Canada Vol. 37 (4) 2015, pp. 121-130
Vol.37 (4) 2015
Sam Walters Details
(Received: 2014-10-10 , Revised: 2014-10-10 )
(Received: 2014-10-10 , Revised: 2014-10-10 )

Sam Walters,Department of Mathematics and Statistics, University of Northern British Columbia, Prince
George, BC, V2N 4Z9, Canada; e-mail: walters@unbc.ca

Abstract/Résumé:

We prove that for locally compact, compactly generated self-dual Abelian groups \(G\), there are canonical unitary integral operators on \(L^2(G)\) analogous to the Fourier transform but which have orders 3 and 6. To do this, we establish the existence of a certain projective character on \(G\) whose phase multiplication with the FT gives rise to the Cubic transform (of order 3). (Thus, although the Fourier transform has order 4, one can “make it” have order 3 (or 6) by means of a phase factor!)

Soit \(G\) un groupe localement compact, engendré par un sousensemble compact, et isomorphe à son groupe dual. On construit des operateurs intégrals unitaires canoniques qui sont analogues à la transformée de Fourier, mais qui sont d’ordres trois et six.

Keywords: C*-algebra, Fourier transform, Gaussian sums, Hilbert space, L2 spaces, Locally compact Abelian groups, characters, cyclic groups, integral transforms, projective char- acter, self-dual groups, unitary operators

AMS Subject Classification: Harmonic analysis and almost periodicity, General properties and structure of LCA groups, Compact groups, General properties and structure of locally compact groups, $C^*$-algebras and $W$*-algebras in relation to group representations, General properties and structure of real Lie groups, Integral representations; integral operators; integral equations methods, Integral operators, Classifications of $C^*$-algebras; factors, Automorphisms, K-theory and operator algebras -including cyclic theory 11K70, 22B05, 22C05, 22D05, 22D25, 22E15, 31A10, 45P05, 46L35, 46L40, 46L80

PDF(click to download): Cubic and Hexic Integral Transforms for Locally Compact Abelian Groups

Periodic Integral Transforms and Associated Noncommutative Orbifold Projections

C. R. Math. Rep. Acad. Sci. Canada Vol. 37 (3) 2015, pp. 114-120
Vol.37 (3) 2015
Sam Walters Details
(Received: 2014-11-02 , Revised: 2015-02-04 )
(Received: 2014-11-02 , Revised: 2015-02-04 )

Sam Walters,Department of Mathematics and Statistics, University of Northern British Columbia, Prince
George, BC V2N 4Z9, Canada; e-mail: walters@unbc.ca

Abstract/Résumé:

We report on recent results on the existence of Cubic and Hexic integral transforms on self-dual locally compact groups (orders 3 and 6 analogues of the classical Fourier transform) and their application in constructing a canonical continuous section of smooth projections \(\mathcal E(t)\) of the continuous field of rotation C*-algebras \(\{A_t\}_{0 \le t \le 1}\) that is invariant under the noncommutative Hexic transform automorphism. This leads to invariant matrix (point) projections of the irrational noncommutative tori \(A_\theta\). We also present a quick method for computing the (quantized) topological invariants of such projections using techniques from classical Theta function theory.

On décrit des résultats récents sur l’existence d’une transformation intégrale d’ordre trois (ou d’ordre six) sur un groupe localement compact abélien self-dual. On étudie l’application possible à la construction d’un champs continu de projecteurs invariants sous l’automorphisme associé du champs de C*-algèbres de rotation. On calcule certains invariants topologiques de ces projecteurs.

Keywords: C*-algebra, Fourier transform, automorphisms, inductive limits, noncommutative tori, orbifold, rotation algebra, symmetries, topological invariants, unbounded traces

AMS Subject Classification: Classifications of $C^*$-algebras; factors, Automorphisms, K-theory and operator algebras -including cyclic theory, $K$-theory, String and superstring theories; other extended objects (e.g.; branes), Topological field theories, String and superstring theories 46L35, 46L40, 46L80, 55N15, 81T30, 81T45, 83E30

PDF(click to download): Periodic Integral Transforms and Associated Noncommutative Orbifold Projections

Topological Obstruction to Approximating the Irrational Rotation C*-algebra by Certain Fourier Invariant C*-subalgebras

C. R. Math. Rep. Acad. Sci. Canada Vol. 37 (3) 2015, pp. 94-99
Vol.37 (3) 2015
Sam Walters Details
(Received: 2014-07-10 , Revised: 2014-07-10 )
(Received: 2014-07-10 , Revised: 2014-07-10 )

Sam Walters,Department of Mathematics and Statistics, University of Northern British Columbia, Prince
George, BC, V2N 4Z9, Canada; e-mail: walters@unbc.ca

Abstract/Résumé:

We demonstrate, in a rather quantitative manner, the existence of topological obstructions to approximating the irrational rotation C*-algebra \(A_\theta\) by Fourier invariant unital C*-subalgebras of either of the forms \[M \oplus B \oplus \sigma(B), \qquad M \oplus N \oplus D \oplus \sigma(D) \oplus \sigma^2(D) \oplus \sigma^3(D),\] where \(M, N\) are Fourier invariant matrix algebras (over \(\mathbb C\)), \(B\) is a C*-subalgebra whose unit projection is flip invariant and orthogonal to its Fourier transform, and \(D\) is a C*-subalgebra whose unit projection is orthogonal to its orbit under the Fourier transform. Here, \(\sigma\) is the noncommutative Fourier transform automorphism of \(A_\theta\) defined by \(\sigma(U) = V^{-1},\ \sigma(V)=U\) on the canonical unitary generators \(U,V\) obeying the unitary Heisenberg commutation relation \(VU = e^{2\pi i\theta}UV\).

On montre l’existence d’obstructions topologiques à l’approximation du tore non-commutatif par sous-algèbres de certains types qui sont invariantes sous l’automorphisme de Fourier.

Keywords: C*-algebra, Fourier transform, automorphisms, inductive limits, noncommutative tori, rotation algebra, topological invariants, topological obstructions, unbounded traces

AMS Subject Classification: Classifications of $C^*$-algebras; factors, Automorphisms, K-theory and operator algebras -including cyclic theory 46L35, 46L40, 46L80

PDF(click to download): Topological Obstruction to Approximating the Irrational Rotation C*-algebra by Certain Fourier Invariant C*-subalgebras

Torsion in the ${K_0}$-Group of a Recursive Subhomogeneous Algebra

C. R. Math. Rep. Acad. Sci. Canada Vol. 31 (4) 2009, pp. 107–114
Vol.31 (4) 2009
Sandro Molina-Cabrera Details
(Received: 2009-07-20 )
(Received: 2009-07-20 )

Sandro Molina-Cabrera, Department of Mathematics, Rıo Piedras Campus, University of Puerto Rico, Box 23355, San Juan, Puerto Rico 00931-3355, USA; email: smolinacabrera@gmail.com

Abstract/Résumé:

We show that the \(K_0\)-group of an inductive limit of recursive subhomogeneous algebras with compact metrizable spaces of dimension at most one as local spectra is torsion free. This result implies that the \(K_0\)-group of a unital simple AH algebra which is the inductive limit of recursive subhomogeneous algebras, with compact metrizable spaces of dimension at most one as local spectra, is torsion free. This proves that Li’s reduction theorem for the dimension of the local spectra of unital simple AH algebras cannot be improved, in other words, that the dimension of the local spectra of unital simple AH algebras cannot be further reduced from two to one, even when we use subhomogeneous algebras. This also shows that if a reduction theorem for the dimension of the local spectra of simple inductive limits of recursive subhomogeneous algebras exists, then, after the reduction, the local spectra of the building blocks cannot always be one dimensional.

Nous démontrons que le \(K_0\)-groupe d’une limite inductive des algèbres sous-homogènes récursives, dont les spectres locaux consistent en des espaces compacts métrisables de dimension au plus un, n’a pas de torsion. Ce résultat implique que les \(K_0\)-groupes d’une algèbre AH simple et avec l’unité qui est la limite des algèbres sous-homogènes rećursives, dont les spectres locaux consistent en des espaces compacts métrisables de dimension au plus un, n’a pas de torsion. Cela prouve que le théorème de Li de la réduction pour la dimension des spectres locaux des algèbres AH simples et avec l’unité ne peut pas être améliorée, en d’autres termes, que la dimension des spectres locaux des algèbres AH simples et avec l’unité ne peut pas encore être réduit de deux à un, même quand on utilise des algèbres sous-homogènes. Cela montre aussi que si un théorème de réduction pour la dimension des spectres locaux d’une limite inductive simple des algèbres sous-homogènes récursives existe, alors, après la réduction, les spectres locaux des blocs de construction ne peuvent pas être toujours de dimension un.

Keywords: AH algebras, C*-algebra, K-theory, classification, recursive subhomogeneous algebras

AMS Subject Classification: K-theory and operator algebras -including cyclic theory 46L80

PDF(click to download): Torsion in the ${K_0}$-Group of a Recursive Subhomogeneous Algebra

Periodic Integral Transforms and C*-Algebras

C. R. Math. Rep. Acad. Sci. Canada Vol. 26 (2) 2004, pp. 55–61
Vol.26 (2) 2004
S. Walters Details
(Received: 2003-06-22 )
(Received: 2003-06-22 )

S. Walters

Abstract/Résumé:

No abstract available but the full text pdf may be downloaded at the title link below.

Keywords: C*-algebra, Fourier transform, automorphisms, integral transforms, rotation algebras

AMS Subject Classification: General transforms, Special transforms (Legendre; Hilbert; etc.), Automorphisms, K-theory and operator algebras -including cyclic theory 44A05, 44A15, 46L40, 46L80

PDF(click to download): Periodic Integral Transforms and C*-Algebras

On the Classification of TAI algebras

C. R. Math. Rep. Acad. Sci. Canada Vol. 26 (1) 2004, pp. 18–24
Vol.26 (1) 2004
Z. Niu Details
(Received: 2003-04-21 )
(Received: 2003-04-21 )

Z. Niu

Abstract/Résumé:

No abstract available but the full text pdf may be downloaded at the title link below.

Keywords:

AMS Subject Classification: Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory 46L35, 46L80

PDF(click to download): On the Classification of TAI algebras

On the irrational quartic algebra

C. R. Math. Rep. Acad. Sci. Canada Vol. 21 (3) 1999, pp. 91–96
Vol.21 (3) 1999
S.G. Walters Details
(Received: 1998-10-22 )
(Received: 1998-10-22 )

S.G. Walters

Abstract/Résumé:

No abstract available but the full text pdf may be downloaded at the title link below.

Keywords: C*-algebra, Chern characters, K-theory, automorphisms, rotation algebras, unbounded traces

AMS Subject Classification: $K_0$ as an ordered group; traces, Automorphisms, K-theory and operator algebras -including cyclic theory 19K14, 46L40, 46L80

PDF(click to download): On the irrational quartic algebra