(Received: 2016-09-26
, Revised: 2016-12-23
)
(Received: 2016-09-26
, Revised: 2016-12-23
)
Michael Yampolsky,Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4; e-mail: yampol@math.toronto.edu
Abstract/Résumé:
In this paper we generalize renormalization theory for analytic critical circle maps with a cubic critical point to the case of maps with an arbitrary odd critical exponent by proving a quasiconformal rigidity statement for renormalizations of such maps.
Dans cet article on généralise la théorie de la renormalisation pour les transformations criticales analytiques du circle à point critical cubique au cas de transformations à exposant critical impair arbitraire, en démontrant une affirmation de rigidité quasi-conforme.
Keywords: Blaschke fractions, Renormalization, critical circle maps, rigidity
AMS Subject Classification:
Maps of the circle, Universality; renormalization, Renormalization
37E10, 37E20, 37F25
PDF(click to download):
Renormalization of Unicritical Analytic Circle Maps