Classification of simple C*-algebras — 4 articles found.
A Classification of Finite Simple Amenable Z-stable C*-algebras, I: C*-algebras with Generalized Tracial Rank One
Guihua Gong, Department of Mathematics, Hebei Normal University, Shijiazhuang, Hebei 050016, China and Department of Mathematics, University of Puerto Rico, Rio Piedras, PR 00936, USA; e-mail: ghgong@gmail.com
Huaxin Lin, Department of Mathematics, East China Normal University, Shanghai 200062, China and (Current) Department of Mathematics, University of Oregon, Eugene, Oregon, 97402, USA; e-mail: hlin@uoregon.edu
Zhuang Niu, Department of Mathematics, University of Wyoming, Laramie, WY, USA, 82071; e-mail: zniu@uwyo.edu
Abstract/Résumé:
A class of C*-algebras, to be called those of generalized tracial rank one, is introduced. A second class of unital simple separable amenable C*-algebras, those whose tensor products with UHF-algebras of infinite type are in the first class, to be referred to as those of rational generalized tracial rank one, is proved to exhaust all possible values of the Elliott invariant for unital finite simple separable amenable \({\cal Z}\)-stable C*-algebras. A number of results toward the classification of the second class are presented including an isomorphism theorem for a special sub-class of the first class, leading to the general classification of all unital simple s with rational generalized tracial rank one in Part II.
Dans cet article et le prochain, on donne une classification complète, au moyen de l’invariant d’Elliott, d’une sous-classe de la classe des C*-algèbres simples, moyennables, séparables, à élément unité, absorbant l’algèbre de Jiang-Su, et satisfaisant au UCT, qui épuise l’ensemble des valeurs possibles de l’invariant pour cette class. La partie I réalise une grande partie de ce projet, et la partie II l’achève.
Keywords: Classification of simple C*-algebras
AMS Subject Classification:
General theory of $C^*$-algebras, Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory
46L05, 46L35, 46L80
PDF(click to download): A Classification of Finite Simple Amenable Z-stable C*-algebras, I: C*-algebras with Generalized Tracial Rank One
A Classification of Tracially Approximate Splitting Interval Algebras. III. Uniqueness Theorem and Isomorphism Theorem
Zhuang Niu,Department of Mathematics, University of Wyoming, Laramie, Wyoming, 82071 USA; e-mail: zniu@uwyo.edu
Abstract/Résumé:
Motivated by Huaxin Lin’s axiomatization of AH-algebras, the class of TASI-algebras is introduced as the class of unital C*-algebras which can be tracially approximated by splitting interval algebras—certain sub-C*-algebras of interval algebras. It is shown that the class of simple separable nuclear TASI-algebras satisfying the UCT is classified by the Elliott invariant. As a consequence, any such TASI-algebra is then isomorphic to an inductive limit of splitting interval algebras together with certain homogeneous C*-algebras—so it is an ASH-algebra.
Une classe de C*-algèbres qui généralisent la classe bien connue TAI de Lin est considérée—basées sur, au lieu de l’intervalle, ce qui pourrait s’appeler l’intervalle fendu (“splitting interval”), de sorte que l’on les appelle la classe TASI. On montre que la classe de C*-algèbres TASI qui sont simples, nucléaires, et à élément unité, qui vérifient le théorème à coefficients universels (UCT), peuvent se classifier d’après l’invariant d’Elliott.
Keywords: Classification of simple C*-algebras, inductive limits of sub-homogeneous C*- algebras, tracially approximate splitting interval algebras
AMS Subject Classification:
Classifications of $C^*$-algebras; factors
46L35
PDF(click to download): A Classification of Tracially Approximate Splitting Interval Algebras. III. Uniqueness Theorem and Isomorphism Theorem
A Classification of Tracially Approximate Splitting Interval Algebras. II. Existence Theorem
Zhuang Niu, Department of Mathematics, University of Wyoming, Laramie, Wyoming, 82071 USA; e-mail: zniu@uwyo.edu
Abstract/Résumé:
Motivated by Huaxin Lin’s axiomatization of AH-algebras, the class of TASI-algebras is introduced as the class of unital C*-algebras which can be tracially approximated by splitting interval algebras—certain sub-C*-algebras of interval algebras. It is shown that the class of simple separable nuclear TASI-algebras satisfying the UCT is classified by the Elliott invariant. As a consequence, any such TASI-algebra is then isomorphic to an inductive limit of splitting interval algebras together with certain homogeneous C*-algebras—so it is an ASH-algebra.
Une classe de C*-algèbres qui généralisent la classe bien connue TAI de Lin est considérée—basées sur, au lieu de l’intervalle, ce qui pourrait s’appeler l’intervalle fendu ("splitting interval"), de sorte que l’on les appelle la classe TASI. On montre que la classe de C*-algèbres TASI qui sont simples, nucléaires, et à élément unité, qui vérifient le théorème à coefficients universels (UCT), peuvent se classifier d’après l’invariant d’Elliott.
Keywords: Classification of simple C*-algebras, inductive limits of sub-homogeneous C*- algebras, tracially approximate splitting interval algebras
AMS Subject Classification:
Classifications of $C^*$-algebras; factors
46L35
PDF(click to download): A Classification of Tracially Approximate Splitting Interval Algebras. II. Existence Theorem
A Classification of Tracially Approximate Splitting Interval Algebras~~I. The Building Blocks and the Limit Algebras
Zhuang Niu, Department of Mathematics, University of Wyoming, Laramie, Wyoming, USA 82071; e-mail: zniu@uwyo.edu
Abstract/Résumé:
Motivated by Huaxin Lin’s axiomatization of AH-algebras, the class of TASI-algebras is introduced as the class of unital C*-algebras which can be tracially approximated by splitting interval algebras—certain sub-C*-algebras of interval algebras. It is shown that the class of simple separable nuclear TASI-algebras satisfying the UCT is classified by the Elliott invariant. As a consequence, any such TASI-algebra is then isomorphic to an inductive limit of splitting interval algebras together with certain homogeneous C*-algebras—so it is an ASH-algebra.
Une classe de C*-algèbres qui généralisent la classe bien connue TAI de Lin est considérée—basées sur, au lieu de l’intervalle, ce qui pourrait s’appeler l’intervalle fendu (“splitting interval”), de sorte que l’on les appelle la classe TASI. On montre que la classe de C*-algèbres TASI qui sont simples, nucléaires, et à élément unité, qui vérifient le théorème à coefficients universels (UCT), peuvent se classifier d’après l’invariant d’Elliott.
Keywords: Classification of simple C*-algebras, inductive limits of sub-homogeneous C*- algebras, tracially approximate splitting interval algebras
AMS Subject Classification:
Classifications of $C^*$-algebras; factors
46L35
PDF(click to download): A Classification of Tracially Approximate Splitting Interval Algebras~~I. The Building Blocks and the Limit Algebras