Cuntz Semigroup — 4 articles found.

Generalized Tracially Approximated C*-algebras

C. R. Math. Rep. Acad. Sci. Canada Vol. 45 (2) 2023, pp. 13–36
Vol.45 (2) 2023
George A. Elliott, FRSC; Qingzhai Fan; Xiaochun Fang Details
(Received: 2023-06-12 , Revised: 2023-07-03 )
(Received: 2023-06-12 , Revised: 2023-07-03 )

George A. Elliott, Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4; e-mail: elliott@math.toronto.edu

Qingzhai Fan , Department of Mathematics, Shanghai Maritime University, Shangha, China 201306; e-mail: fanqingzhai@fudan.edu.cn,qzfan@shmtu.edu.cn

Xiaochun Fang, Department of Mathematics, Tongji University, Shanghai, China 200092; e-mail: xfang@tongji.edu.cn

Abstract/Résumé:

In this paper, we introduce some classes of generalized tracial approximation C*-algebras. Consider the class of unital C*-algebras which are tracially 𝒵-absorbing (or have tracial nuclear dimension at most n, or have the property SP, or are m-almost divisible). Then A is tracially 𝒵-absorbing (respectively, has tracial nuclear dimension at most n, has the property SP, is weakly (n, m)-almost divisible) for any simple unital C*-algebra A in the corresponding class of generalized tracial approximation C*-algebras. As an application, let A be an infinite-dimensional unital simple C*-algebra, and let B be a centrally large subalgebra of A. If B is tracially 𝒵-absorbing, then A is tracially 𝒵-absorbing. This result was obtained by Archey, Buck, and Phillips in Archey et al. (2018).

On introduit la notion d’approximation traciale généralisée d’une C*-algèbre par des C*-algèbres dans une class donnée. Cette notion généralise la notion de Lin d’approximation triviale simple, et aussi la notion d’Archey et de Phillips de centralement grande sousalgèbre, deux notions qui se sont démontrées très importantes.

Keywords: Cuntz Semigroup, C∗-algebras, tracial approximation

AMS Subject Classification: General theory of $C^*$-algebras, Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory 46L05, 46L35, 46L80

PDF(click to download): Generalized Tracially Approximated C*-algebras

The Cuntz Semigroup of the Tensor Product of C*-algebras

C. R. Math. Rep. Acad. Sci. Canada Vol. 41 (2) 2019, pp. 32-44
Vol.41 (2) 2019
George A. Elliott; Cristian Ivanescu; Dan Kucerovsky Details
(Received: 2014-12-08 , Revised: 2019-10-24 )
(Received: 2014-12-08 , Revised: 2019-10-24 )

George A. Elliott,Department of Mathematics, University of Toronto, Toronto, Canada M5S 2E4; e-mail: elliott@math.toronto.edu

Cristian Ivanescu.Department of Mathematics and Statistics, MacEwan University, Edmonton, Alberta, Canada T5J 4S2; e-mail: IvanescuC@macewan.ca

Dan Kurcerovsky.Department of Mathematics and Statistics, University of New Brunswick, Fredericton, New Brunswick, Canada E38 5A3; e-mail: dkucerov@unb.ca

Abstract/Résumé:

We calculate the Cuntz semigroup of the tensor product of two C\(^*\)-algebras, restricting attention to the case that the Cuntz semigroup, both for the given algebras and for the tensor product, is given by affine functions. We show that the answer is the universal Cuntz category tensor product of Antoine et al. (2018).

On démontre que, dans certains cas, le semigroupe de Cuntz du produit tensoriel de deux C\(^*\)-algèbres est le produit tensoriel dans la catégorie de Cuntz.

Keywords: C*-algebra tensor product, Cuntz Semigroup, tracial cone

AMS Subject Classification: Convex sets in topological linear spaces; Choquet theory, General theory of $C^*$-algebras 46A55, 46L05

PDF(click to download): The Cuntz Semigroup of the Tensor Product of C*-algebras

Certain Properties of Tracial Approximation ${\rm C^*}$-Algebras

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (4) 2018, pp. 104-133
Vol.40 (4) 2018
George A. Elliott, FRSC; Qingzhai Fan; Xiaochun Fang Details
(Received: 2019-04-07 )
(Received: 2019-04-07 )

George A. Elliott, FRSC,Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4; e-mail: elliott@math.toronto.edu,

Qingzhai Fan,Department of Mathematics, Shanghai Maritime University, Shanghai, China 201306; e-mail: fanqingzhai@fudan.edu.cn,qzfan@shmtu.edu.cn

Xiaochun Fang,Department of Mathematics, Tongji University, Shangha, China 200092; e-mail: xfang@mail.tongji.edu.cn

Abstract/Résumé:

We show that the following properties of the \({\rm C^*}\)-algebras in a class \(\Omega\) are inherited by simple unital \({\rm C^*}\)-algebras in the class \({\rm TA}\Omega\): \((1)\) \(\beta\)-comparison (\(1\leq \beta < \infty\)), \((2)\) \(n\)-comparison, \((3)\) trace \(\mathcal{Z}\)– absorption, \((4)\) \(m\)-almost divisibility, \((5)\) \((n,m) ~(m\neq 0)\) comparison, and \((6)\) tracial approximate divisibility. As an application, every unital simple \({\rm C^*}\)-algebra with tracial topological rank at most \(k\) has the property of \(k\)-comparison. Also as an application, let \(A\) be an infinite-dimensional simple unital \({\rm C^*}\)-algebra such that \(A\) has one of the above-listed properties. Suppose that \(\alpha: G\to {\rm Aut}(A)\) is an action of a finite group \(G\) on \(A\) which has the tracial Rokhlin property. Then the crossed product \({\rm C^*}\)-algebra \({\rm C^*}( G, A,\alpha)\) also has the property under consideration.

On considère plusieurs propriétés d’une C*-algèbre simple à élément unité qui sont héritées par approximation traciale. Comme application on démontre que ces propriétés sont aussi héritées par la C*-algèbre produit croisé associée à une action d’un groupe fini qui possède la propriété de Rokhlin traciale.

Keywords: C*-algebra, Cuntz Semigroup, tracial approximation

AMS Subject Classification: General theory of $C^*$-algebras, Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory 46L05, 46L35, 46L80

PDF(click to download): Certain Properties of Tracial Approximation ${C^*}$-Algebras

The Cuntz Semigroup of Some Spaces of Dimension at Most Two

C. R. Math. Rep. Acad. Sci. Canada Vol. 35 (1) 2013, pp. 22–32
Vol.35 (1) 2013
Leonel Robert Details
(Received: 2012-09-12 , Revised: 2013-03-26 )
(Received: 2012-09-12 , Revised: 2013-03-26 )

Leonel Robert, Department of Mathematics, University of Louisiana at Lafayette, Lafayette, USA; e-mail: lrobert@louisiana.edu

Abstract/Résumé:

It is shown that the Cuntz semigroup of a space with dimension at most two, and with second cohomology of its compact subsets equal to zero, is isomorphic to the ordered semigroup of lower semicontinuous functions on the space with values in the natural numbers with the infinity adjoined. This computation is then used to obtain the Cuntz semigroup of all compact surfaces. A converse to the first computation is also proven: if the Cuntz semigroup of a separable C*-algebra is isomorphic

Il est montré que le semi-groupe de Cuntz d’un espace de dimension au plus deux, et avec cohomologie deuxième de ses sous-ensembles compacts égales à zéro, est isomorphe au semi-groupe ordonné de fonctions semi-continue inférieurement sur l’espace de baisse avec des valeurs au entiers naturels augmentée à l’infini. Ce calcul est ensuite utilisé pour obtenir le semi-groupe de Cuntz de toutes les surfaces compacts. Un inverse du premier calcul est également prouvé: si le semi-groupe de Cuntz d’un C*-algèbre séparable est isomorphe aux fonctions semi-continue inférieurement de une space topoligique à valeurs dans les entiers naturels augmentée, alors la C*-algébre est commutative à stabilisation près, et son spectrum satisfait aux conditions dimensionnelles et cohomologique mentionné ci-dessus.

Keywords: Cuntz Semigroup

AMS Subject Classification: $C^*$-modules 46L08

PDF(click to download): The Cuntz Semigroup of Some Spaces of Dimension at Most Two