elliptic curves — 3 articles found.
On Dependence of Rational Points on Elliptic Curves
Mohammad Sadek,Department of Mathematics and Actuarial Science, American University in Cairo, Cairo, Egypt; e-mail: mmsadek@aucegypt.edu
Abstract/Résumé:
Let \(E\) be an elliptic curve defined over \(Q\). Let \(\Gamma\) be a subgroup of \(E(Q)\) and \(P\in E(Q)\). In \cite{Arithmetic}, it was proved that if \(E\) has no nontrivial rational torsion points, then \(P\in\Gamma\) if and only if \(P\in \Gamma\) mod \(p\) for finitely many primes \(p\). In this note, assuming the General Riemann Hypothesis, we provide an explicit upper bound on these primes when \(E\) does not have complex multiplication and either \(E\) is a semistable curve or \(E\) has no exceptional prime.
Soit \(E\) une courbe elliptique définie sur \(Q\). Soit \( \Gamma\) un sous-groupe de \( E(Q) \) et \( P \in E (Q) \). Dans \cite{Arithmetic}, il on a prouvé que si \( E \) n’a pas de points de torsion rationels non trivials, alors \( P \in \Gamma \) si et seulement si \( P \in \Gamma \) mod \( p \) pour un nombre fini de nombres premiers \( p \). Dans cette note, supposant l’hypothèse général de Riemann, nous fournissons une borne-supérieure explicite sur ces nombres premiers quand \( E \) n’a pas de multiplication complexe et soit \( E \) est une courbe semi-stable soit \( E \) n’a aucun nombre premier exceptionnel.
Keywords: elliptic curves, linear dependence, rational points
AMS Subject Classification:
Elliptic curves over global fields, Rational points
11G05, 14G05
PDF(click to download): On Dependence of Rational Points on Elliptic Curves
Further Remarks on Rational Albime Triangles
Jasbir S. Chahal,Department of Mathematics, Brigham Young University, Provo, UT 84602, USA; e-mail: jasbir@math.byu.edu
Josselin Kooij,University of Groningen, Department of Mathematics, P.O. Box 407, 9700 AK, Groningen, The Netherlands; e-mail: j.f.kooij@student.rug.nl
Jaap Top,University of Groningen, Department of Mathematics, P.O. Box 407, 9700 AK, Groningen, The Netherlands; e-mail: j.top@rug.nl
Abstract/Résumé:
In this note we present further number theoretic properties of the rational albime triangles, in particular, the distribution of acute vs. obtuse rational albime triangles. The notion of albime triangle is extended to include the case of external angle bisector. The proportion of internal vs. external rational albime triangles is also computed.
Dans cette note, nous présentons des propriétés supplémentaires (concernant la théorie des nombres) des triangles rationnels ‘albimes’; en particulier, la distribution des triangles rationnels albimes aigus contre obtus. La notion de triangle albime est développé pour comprendre le cas d’extérieur bissectrice. On calcule aussi la proportion des triangles rationnels albimes internes contre externes.
Keywords: Ceva's theorem, elliptic curves, primitive albime triplets, rational albime triangles
AMS Subject Classification:
Elliptic curves over global fields, Miscellaneous applications of number theory
11G05, 11Z05
PDF(click to download): Further Remarks on Rational Albime Triangles
A non-vanishing theorem on Dirichlet series
Wentang Kuo, Department of Pure Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1; email: wtkuo@math.uwaterloo.ca
Abstract/Résumé:
The non-vanishing property of certain Dirichlet series is a fundamental problem in analytic number theory. In this paper, we provide a non-vanishing theorem, which is a generalization of Ogg’s result. We apply our theorem to get applications on distributions of eigenvalues of Hecke eigenforms and recover the non-vanishing theorem for the \(L\)-functions of cuspidal representations.
La propriété non nulle de certaines séries de Dirichlet est un problème fondamental dans la théorie analytique des nombres. Dans cet article, nous fournissons un théorème non-non-vanishing, qui est une généralisation du résultat d’Ogg. Nous appliquons notre théorème pour obtenir des applications sur des distributions des valeurs propres des opérateurs de Hecke et nous récupèrous théorème non nulle pour les \(L\)-fonctions des représentations cuspidales.
Keywords: L-functions, elliptic curves, non-vanishing.
AMS Subject Classification:
Modular and automorphic functions
11F03
PDF(click to download): A non-vanishing theorem on Dirichlet series
Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.