Hamiltonian systems — 2 articles found.
On the existence of Hamiltonian paths connecting Lagrangian submanifolds
Nassif Ghoussoub, Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2; email: nassif@math.ubc.ca
Abbas Moameni, Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2; email: moameni@math.ubc.ca
Abstract/Résumé:
We use a new variational method—based on the theory of anti-selfdual Lagrangians developed recently—to establish the existence of solutions of convex Hamiltonian systems that connect two given Lagrangian submanifolds in \(\mathbb{R}^{2N}\). We also consider the case where the Hamiltonian is only semi-convex. A variational principle is also used to establish existence for the corresponding Cauchy problem.
Une nouvelle méthode variationnelle—basée sur la théorie des Lagrangiens auto-adjoints developée récemment—est utilisée pour établir l’existence de solutions de systèmes Hamiltoniens convexes, qui connectent deux sous-variétés Lagrangiennes données dans \(\mathbb{R}^{2N}\). On considère aussi le cas des Hamiltoniens semi-convexes, ainsi que le problème de Cauchy correspondant.
Keywords: Hamiltonian systems, Lagrangian submanifolds, self-duality
AMS Subject Classification:
Hamiltonian structures; symmetries; variational principles; conservation laws
37K05
PDF(click to download): On the existence of Hamiltonian paths connecting Lagrangian submanifolds
Hamiltonian mechanics on principal bundles
R. Cushman / J. Śniatycki
Abstract/Résumé:
No abstract available but the full text pdf may be downloaded at the title link below.
Keywords: Hamiltonian systems, reduction, symmetries
AMS Subject Classification:
, Symmetries and conservation laws; reverse symmetries; invariant manifolds and their bifurcations; reduction
58F05, 70H33
PDF(click to download): Hamiltonian mechanics on principal bundles