11G05 — 4 articles found.

On Dependence of Rational Points on Elliptic Curves

C. R. Math. Rep. Acad. Sci. Canada Vol. 38 (2) 2016, pp. 75-84
Vol.38 (2) 2016
Mohammad Sadek Details
(Received: 2015-04-15 , Revised: 2015-08-18 )
(Received: 2015-04-15 , Revised: 2015-08-18 )

Mohammad Sadek,Department of Mathematics and Actuarial Science, American University in Cairo, Cairo, Egypt; e-mail: mmsadek@aucegypt.edu

Abstract/Résumé:

Let \(E\) be an elliptic curve defined over \(Q\). Let \(\Gamma\) be a subgroup of \(E(Q)\) and \(P\in E(Q)\). In \cite{Arithmetic}, it was proved that if \(E\) has no nontrivial rational torsion points, then \(P\in\Gamma\) if and only if \(P\in \Gamma\) mod \(p\) for finitely many primes \(p\). In this note, assuming the General Riemann Hypothesis, we provide an explicit upper bound on these primes when \(E\) does not have complex multiplication and either \(E\) is a semistable curve or \(E\) has no exceptional prime.

Soit \(E\) une courbe elliptique définie sur \(Q\). Soit \( \Gamma\) un sous-groupe de \( E(Q) \) et \( P \in E (Q) \). Dans \cite{Arithmetic}, il on a prouvé que si \( E \) n’a pas de points de torsion rationels non trivials, alors \( P \in \Gamma \) si et seulement si \( P \in \Gamma \) mod \( p \) pour un nombre fini de nombres premiers \( p \). Dans cette note, supposant l’hypothèse général de Riemann, nous fournissons une borne-supérieure explicite sur ces nombres premiers quand \( E \) n’a pas de multiplication complexe et soit \( E \) est une courbe semi-stable soit \( E \) n’a aucun nombre premier exceptionnel.

Keywords: elliptic curves, linear dependence, rational points

AMS Subject Classification: Elliptic curves over global fields, Rational points 11G05, 14G05

PDF(click to download): On Dependence of Rational Points on Elliptic Curves

Further Remarks on Rational Albime Triangles

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (2) 2017, pp. 67-76
Vol.39 (2) 2017
Jasbir S. Chahal; Josselin Kooij; Jaap Top Details
(Received: 2015-07-26 , Revised: 2016-11-14 )
(Received: 2015-07-26 , Revised: 2016-11-14 )

Jasbir S. Chahal,Department of Mathematics, Brigham Young University, Provo, UT 84602, USA; e-mail: jasbir@math.byu.edu

Josselin Kooij,University of Groningen, Department of Mathematics, P.O. Box 407, 9700 AK, Groningen, The Netherlands; e-mail: j.f.kooij@student.rug.nl

Jaap Top,University of Groningen, Department of Mathematics, P.O. Box 407, 9700 AK, Groningen, The Netherlands; e-mail: j.top@rug.nl

Abstract/Résumé:

In this note we present further number theoretic properties of the rational albime triangles, in particular, the distribution of acute vs. obtuse rational albime triangles. The notion of albime triangle is extended to include the case of external angle bisector. The proportion of internal vs. external rational albime triangles is also computed.

Dans cette note, nous présentons des propriétés supplémentaires (concernant la théorie des nombres) des triangles rationnels ‘albimes’; en particulier, la distribution des triangles rationnels albimes aigus contre obtus. La notion de triangle albime est développé pour comprendre le cas d’extérieur bissectrice. On calcule aussi la proportion des triangles rationnels albimes internes contre externes.

Keywords: Ceva's theorem, elliptic curves, primitive albime triplets, rational albime triangles

AMS Subject Classification: Elliptic curves over global fields, Miscellaneous applications of number theory 11G05, 11Z05

PDF(click to download): Further Remarks on Rational Albime Triangles

Variation in the number of points on elliptic curves and applications to excess rank

C. R. Math. Rep. Acad. Sci. Canada Vol. 27, (4), 2005 pp. 111–120
Vol.27 (4) 2005
Steven J. Miller Details
(Received: 2005-07-19 )
(Received: 2005-07-19 )

Steven J. Miller, Department of Mathematics, Brown University, 151 Thayer Street, Providence, Rhode Island 02912 USA; email: sjmiller@math.brown.edu

Abstract/Résumé:

Michel proved that for a one-parameter family of elliptic curves over \(\mathbb{Q}(T)\) with non-constant \(j(T)\) that the second moment of the number of solutions modulo \(p\) is \(p^2 + O(p^{3/2})\). We show this bound is sharp by studying \(y^2 = x^3 + Tx^2 + 1\). Lower order terms for such moments in a family are related to lower order terms in the \(n\)-level densities of Katz and Sarnak, which describe the behavior of the zeros near the central point of the associated \(L\)-functions. We conclude by investigating similar families and show how the lower order terms in the second moment may affect the expected bounds for the average rank of families in numerical investigations.

Michel a démontré que pour une famille de courbes élliptiques à un paramètre sur \(\mathbb{Q}(T)\) avec \(j(T)\) non-constant, le second moment du nombre de solutions modulo \(p\) est \(p^2 + O(p^{3/2})\). Nous montrons que cette limite est précise en étudiant \(y^2 = x^3 + Tx^2 + 1\). Pour de tels moments dans une famille, les termes d’ordre inférieur sont liés aux termes dans les \(n\)-niveaux de densité de Katz et Sarnak, qui decrivent le comportement des zéros près du point central des \(L\)-fonctions associées. Nous concluons en recherchant des familles semblables et en montrant comment les termes d’ordre inférieur dans le second moment peuvent affecter les bornes pour le rang moyen de familles dans des simulations numériques.

Keywords: Michel’s theorem, average rank, n-level densities, number of points on elliptic curves

AMS Subject Classification: Elliptic curves over global fields 11G05

PDF(click to download): Variation in the number of points on elliptic curves and applications to excess rank

Bounding the torsion in CM elliptic curves

C. R. Math. Rep. Acad. Sci. Canada Vol. 23 (1) 2001, pp. 1–5
Vol.23 (1) 2001
D. Prasad / C.S. Yogananda Details
(Received: 2000-01-21 )
(Received: 2000-01-21 )

D. Prasad / C.S. Yogananda

Abstract/Résumé:

No abstract available but the full text pdf may be downloaded at the title link below.

Keywords:

AMS Subject Classification: Elliptic curves over global fields 11G05

PDF(click to download): Bounding the torsion in CM elliptic curves