approximation property — 3 articles found.
On Geometric Preduals of Jet Spaces on Closed Subsets of ${\mathbb R}^n$
Alexander Brudnyi,Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; e-mail: abrudnyi@ucalgary.ca
Almaz Buraev, Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; e-mail: butaev@ucalgary.ca
Abstract/Résumé:
Let \(C_b^{k,\omega}({\mathbb R}^n)\) be the Banach space of \(C^k\) functions on \({\mathbb R}^n\) bounded together with all derivatives of order \(\le k\) , where the derivatives of order \(k\) have moduli of continuity majorization by \(c\,\omega\) , \(c\in\mathbb R_+\) , for some \(\omega\in C(\mathbb R_+)\) . For a closed set \(S\subset{\mathbb R}^n\) the jet space \(J_b^{k,\omega}(S)\) is the Banach space of vector functions whose components are partial derivatives of functions in \(C_b^{k,\omega}({\mathbb R}^n)\) evaluated at points of \(S\) equipped with the corresponding quotient norm. The geometric predual \(G_J^{k,\omega}(S)\) of \(J_b^{k,\omega}(S)\) is the minimal closed subspace of the dual \(\bigl(C_b^{k,\omega}({\mathbb R}^n)\bigr)^*\) containing the evaluation functionals of all partial derivatives of order \(\le k\) at points in \(S\) . In the paper we study some geometric properties of spaces \(G_J^{k,\omega}(S)\) related to the classical Whitney problems.
Soit \(C_b^{k,\omega}({\mathbb R}^n)\) l’espace de Banach des fonctions \(C^k\) sur \({\mathbb R}^n\) bornées avec toutes les dérivées d’ordre \(k\) , où les dérivés d’ordre \(k\) ont des modules de continuités majorés par \(c\,\omega\) , \(c\in\mathbb R_+\) , pour quelques \(\omega\in C(\mathbb R_+)\) . Pour un ensemble fermé \(S\subset{\mathbb R}^n\) l’espace de jet \(J_b^{k,\omega}(S)\) est l’espace de Banach des fonctions vectorielles dont les composantes sont des dérivées partielles des fonctions en \(C_b^{k,\omega}({\mathbb R}^n)\) évaluées aux points de \(S\) équipés de la norme du quotient correspondante. Le prédual géométrique \(G_J^{k,\omega}(S)\) de \(J_b^{k,\omega}(S)\) est le sous-espace minimal fermé du dual \(\bigl(C_b^{k,\omega}({\mathbb R}^n)\bigr)^*\) contenant les fonctionnelles d’évaluation de toutes les dérivées partielles d’ordre \(\le k\) aux points de \(S\) . Dans cet article, nous étudions certaines propriétés géométriques des espaces \(G_J^{k,\omega}(S)\) liées aux problèmes classiques de Whitney.
Keywords: Predual space, Whitney problems, approximation property, second dual space, trace space
AMS Subject Classification:
Geometry and structure of normed linear spaces, Banach spaces of continuous; differentiable or analytic functions
46B20, 46E15
PDF(click to download): On Geometric Preduals of Jet Spaces on Closed Subsets of ${mathbb R}^n$
On Properties of Geometric Preduals of ${\mathbf C^{k,\omega}}$ Spaces
Alexander Brudnyi,Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4; e-mail: abrudnyi@ucalgary.ca
Abstract/Résumé:
Let \(C_b^{k,\omega}({\mathbb R}^n)\) be the Banach space of \(C^k\) functions on \({\mathbb R}^n\) bounded together with all derivatives of order \(\le k\) and with derivatives of order \(k\) having moduli of continuity majorated by \(c\cdot\omega\), \(c\in{\mathbb R}_+\), for some \(\omega\in C({\mathbb R}_+)\). Let \(C_b^{k,\omega}(S):=C_b^{k,\omega}({\mathbb R}^n)|_S\) be the trace space to a closed subset \(S\subset{\mathbb R}^n\). The geometric predual \(G_b^{k,\omega}(S)\) of \(C_b^{k,\omega}(S)\) is the minimal closed subspace of the dual \(\bigl(C_b^{k,\omega}({\mathbb R}^n)\bigr)^*\) containing evaluation functionals of points in \(S\). We study geometric properties of spaces \(G_b^{k,\omega}(S)\) and their relations to the classical Whitney problems on the characterization of trace spaces of \(C^k\) functions on \({\mathbb R}^n\).
Soit \(C_b^{k, \omega} ({\mathbb R}^n)\) l’espace de Banach des fonctions \(C^k\) sur \({\mathbb R}^n\) bornées avec toutes leurs dérivées d’ordre jusqu’à \(k\) et avec les dérivées d’ordre \(k\) ayant des modules de continuité majorés par \(c \cdot \omega\), \(c \in {\mathbb R}_+\), pour quelque \(\omega \in C ({\mathbb R}_+)\). Soit \(C_b ^ {k, \omega} (S): = C_b^{k, \omega} ({\mathbb R}^n) |_S\) l’espace de trace à un fermé \(S\subset{\mathbb R} ^ n\). Le predual géométrique \(G_b^{k, \omega}(S)\) de \(C_b^{k, \omega} (S)\) est le sous-espace minimal fermé du dual \(\bigl (C_b^ {k, \omega} ({\mathbb R}^n) \bigr)^*\) contenant les fonctionnelles d’évaluation aux points de \(S\). Nous étudions les propriétés géométriques des espaces \(G_b^{k, \omega} (S)\) et leur relation avec les problèmes classiques de Whitney sur la caractérisation des espaces de trace des fonctions \(C^k\) sur \({\mathbb R}^n\).
Keywords: Finiteness Principle, Predual space, Weak Markov set, Whitney problems, approximation property, dual space, linear extension operator, weak$^*$ topology
AMS Subject Classification:
Geometry and structure of normed linear spaces, Banach spaces of continuous; differentiable or analytic functions
46B20, 46E15
PDF(click to download): On Properties of Geometric Preduals of ${mathbf C^{k,omega}}$ Spaces
On Algebras of Holomorphic Functions with Semi-Almost Periodic Boundary values
Alexander Brudnyi, Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4; email: albru@math.ucalgary.ca
Damir Kinzebulatov, Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4; email: dkinz@math.toronto.edu
Abstract/Résumé:
We study the algebras of bounded holomorphic functions on the unit disk whose boundary values, having, in a sense, the weakest possible discontinuities, belong to the algebra of semi-almost periodic functions on the unit circle. The latter algebra contains as a special case an algebra introduced by Sarason in connection with some problems in the theory of Toeplitz operators. We show that such algebras have the Grothendieck approximation property, prove the corona theorem for them and formulate some results on the structure of their maximal ideal spaces. Also, we extend the notion of the Bohr–Fourier spectrum to holomorphic semi-almost periodic functions and prove that under certain assumptions on their spectra the corresponding algebras are projective free and their maximal ideal spaces have trivial Čech cohomology groups.
On étudie les algèbres des fonctions holomorphes bornées sur le disque unité dont les valeurs au bord ayant, dans us certain sens, des discontinuités les plus faibles possible, appartiennent á l’algèbre de fonctions semi-presque périodique sur le circle unité. Cette dernière contient, en particulier, une algèbre introduite par Sarason en relation avec certains problèmes de la théorie des opérateurs de Toeplitz. On montre que ces algèbres ont la propriéte d’approximation de Grothendieck; on prouve le theorème corona pour celles-ci et on formule quelques résultats sur la structure de leurs espaces idéaux maximaux. On étend aussi la notion du spectre de Bohr-Fourier à des fonctions holomorphiques semi-presques périodiques et on prouve que sous certaines hypothèses sur leur spectres, tout module projectif des algèbres correspondants est libre et leurs espaces idéaux maximaux ont des cohomologies triviales de Čech.
Keywords: approximation property, maximal ideal space, semi-almost periodic function
AMS Subject Classification:
Spaces and algebras of analytic functions
30H05
PDF(click to download): On Algebras of Holomorphic Functions with Semi-Almost Periodic Boundary values
Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.