37F25 — 3 articles found.

KAM-renormalization and Herman Rings for 2D Maps

C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (2) 2021, pp. 78-86
Vol.43 (2) 2021
Michael Yampolsky Details
(Received: 2021-03-14 , Revised: 2021-04-21 )
(Received: 2021-03-14 , Revised: 2021-04-21 )

Michael Yampolsky, Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4; e-mail: yampol@math.toronto.edu

Abstract/Résumé:

In this note, we extend the renormalization horseshoe we have recently constructed with N. Goncharuk for analytic diffeomorphisms of the circle to their small two-dimensional perturbations. As one consequence, Herman rings with rotation numbers of bounded type survive on a codimension one set of parameters under small two-dimensional perturbations.

On étend le fer à cheval de renormalisation récemment construit avec N. Goncharuk pour les difféomorphismes analytiques du cercle à leurs petites perturbations à deux dimensions. Il suit que les anneaux de Herman à nombre de rotation de type borné survivent sur un ensemble de paramètres à codimension un sous petites perturbations à deux dimensions.

Keywords: Henon-like maps, Herman rings, rotation domains

AMS Subject Classification: Renormalization, Small divisors; rotation domains and linearization; Fatou and Julia sets, 37F25, 37F50, 37F80

PDF(click to download): KAM-renormalization and Herman Rings for 2D Maps

Renormalization of Bi-cubic Circle Maps

C. R. Math. Rep. Acad. Sci. Canada Vol. 41 (4) 2019, pp. 57-83
Vol.41 (4) 2019
Michael Yampolsky Details
(Received: 2019-09-03 , Revised: 2019-12-19 )
(Received: 2019-09-03 , Revised: 2019-12-19 )

Michael Yampolsky,Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4; e-mail: yampol@math.toronto.edu

Abstract/Résumé:

We develop a renormalization theory for analytic homeomorphisms of the circle with two cubic critical points. We prove a renormalization hyperbolicity theorem. As a basis for the proofs, we develop complex a priori bounds for multi-critical circle maps.

On développe une théorie de renormalisation pour les homéomorphismes analytiques du cercle à deux points critiques cubiques. On démontre un théorème d’hyperbolicité dans le cadre de renormalisation. Comme base des démonstrations, on développe des bornes complexes a priori pour les applications du cercle dans lui-même aux points critiques multiples

Keywords: Critical circle map, Renormalization, complex bounds

AMS Subject Classification: Maps of the circle, Universality; renormalization, Renormalization 37E10, 37E20, 37F25

PDF(click to download): Renormalization of Bi-cubic Circle Maps

Renormalization of Unicritical Analytic Circle Maps

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (3) 2017, pp. 77-89
Vol.39 (3) 2017
Michael Yampolsky Details
(Received: 2016-09-26 , Revised: 2016-12-23 )
(Received: 2016-09-26 , Revised: 2016-12-23 )

Michael Yampolsky,Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4; e-mail: yampol@math.toronto.edu

Abstract/Résumé:

In this paper we generalize renormalization theory for analytic critical circle maps with a cubic critical point to the case of maps with an arbitrary odd critical exponent by proving a quasiconformal rigidity statement for renormalizations of such maps.

Dans cet article on généralise la théorie de la renormalisation pour les transformations criticales analytiques du circle à point critical cubique au cas de transformations à exposant critical impair arbitraire, en démontrant une affirmation de rigidité quasi-conforme.

Keywords: Blaschke fractions, Renormalization, critical circle maps, rigidity

AMS Subject Classification: Maps of the circle, Universality; renormalization, Renormalization 37E10, 37E20, 37F25

PDF(click to download): Renormalization of Unicritical Analytic Circle Maps

Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.