(Received: 2021-03-09
, Revised: 2021-04-14
)
(Received: 2021-03-09
, Revised: 2021-04-14
)
M. Manickam , Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066 INDIA; e-mail: manickam@iiserb.ac.in, murugumanick@gmail.com
V. Kumar Murty, FRSC,Department of Mathematics, University of Toronto, Ontario, Canada, M5S 2E4; e-mail: murty@math.toronto.edu
E. M. Sandeep, Kerala School of Mathematics, Kunnamangalam, Kozhikode-673571, Kerala INDIA; e-mail: sandeep@ksom.res.in, mepeednas@gmail.com
Abstract/Résumé:
We consider a kernel function introduced by Kohnen and prove an asymptotic formula for a weighted sum of \(L\)-functions of modular forms.
On considère une fonction noyau introduite par Kohnen et démontre une formule asymptotique pour une somme pondérée de fonctions L de forms modulaires.
Keywords: Hecke eigenforms, Modular L-function, cusp forms, full modular group, integral weight, lower bound, non-vanishing.
AMS Subject Classification:
Modular forms; one variable, Automorphic forms; one variable, Dirichlet series and functional equations in connection with modular forms
11F11, 11F12, 11F66
PDF(click to download):
A Weighted Average of L-functions of Modular Forms