11F11 — 3 articles found.

A Weighted Average of $L$-functions of Modular Forms

C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (2) 2021, pp. 63-77
Vol.43 (2) 2021
M. Manickam; V. Kumar Murty, FRSC; E. M. Sandeep Details
(Received: 2021-03-09 , Revised: 2021-04-14 )
(Received: 2021-03-09 , Revised: 2021-04-14 )

M. Manickam , Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066 INDIA; e-mail: manickam@iiserb.ac.in, murugumanick@gmail.com

V. Kumar Murty, FRSC,Department of Mathematics, University of Toronto, Ontario, Canada, M5S 2E4; e-mail: murty@math.toronto.edu

E. M. Sandeep, Kerala School of Mathematics, Kunnamangalam, Kozhikode-673571, Kerala INDIA; e-mail: sandeep@ksom.res.in, mepeednas@gmail.com

Abstract/Résumé:

We consider a kernel function introduced by Kohnen and prove an asymptotic formula for a weighted sum of \(L\)-functions of modular forms.

On considère une fonction noyau introduite par Kohnen et démontre une formule asymptotique pour une somme pondérée de fonctions L de forms modulaires.

Keywords: Hecke eigenforms, Modular L-function, cusp forms, full modular group, integral weight, lower bound, non-vanishing.

AMS Subject Classification: Modular forms; one variable, Automorphic forms; one variable, Dirichlet series and functional equations in connection with modular forms 11F11, 11F12, 11F66

PDF(click to download): A Weighted Average of L-functions of Modular Forms

On the Spectral Theory Approach to Counting Hyperbolic Lattice Points in Thin Regions

C. R. Math. Rep. Acad. Sci. Canada Vol. 24 (1) 2002, pp. 16–20
Vol.24 (1) 2002
C.J. Mozzochi Details
(Received: 2000-02-02 )
(Received: 2000-02-02 )

C.J. Mozzochi

Abstract/Résumé:

No abstract available but the full text pdf may be downloaded at the title link below.

Keywords:

AMS Subject Classification: Modular and automorphic functions, Modular forms; one variable, Automorphic forms; one variable, Spectral theory; Selberg trace formula 11F03, 11F11, 11F12, 11F72

PDF(click to download): On the Spectral Theory Approach to Counting Hyperbolic Lattice Points in Thin Regions

The central critical value of automorphic L-functions

C. R. Math. Rep. Acad. Sci. Canada Vol. 22 (2) 2000, pp. 82–85
Vol.22 (2) 2000
J. Sengupta Details
(Received: 1999-06-20 )
(Received: 1999-06-20 )

J. Sengupta

Abstract/Résumé:

No abstract available but the full text pdf may be downloaded at the title link below.

Keywords:

AMS Subject Classification: Modular forms; one variable, Special values of automorphic $L$-series; periods of modular forms; cohomology; modular symbols 11F11, 11F67

PDF(click to download): The central critical value of automorphic L-functions

Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.