center problem — 3 articles found.

On Characterization of Universal Centers of ODEs with Analytic Coefficients

C. R. Math. Rep. Acad. Sci. Canada Vol. 35 (4) 2013, pp. 137–147
Vol.35 (4) 2013
Alexander Brudnyi Details
(Received: 2013-07-19 , Revised: 2013-09-17 )
(Received: 2013-07-19 , Revised: 2013-09-17 )

Alexander Brudnyi , Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, T2N 1N4; e-mail: albru@math.ucalgary.ca

Abstract/Résumé:

We present a solution of the problem of characterization of the universal centers of a differential equation $v’=\sum_{j=1}^n a_j v^{j+1}$ with all $a_j$ real analytic in a neighbourhood of $[a,b]\Subset\mathbb{R}$ in terms of the vanishing of finitely many moments determined by $a_1, \ldots, a_n$.

On présente la solution du problème de caractériser les centres universels d’une équation différentielle $v’=\sum_{j=1}^n a_j v^{j+1}$ dont tous les coefficients sont des fonctions analytiques réelles autour de $[a,b]\Subset\mathbb{R}$ en utilisant les ensembles des zéros d’un nombre fini des moments calculés en partant des fonctions $a_1, \ldots, a_n$

Keywords: Lipschitz curve, Moment, center problem, homology, polynomial approximation, unicursal curve

AMS Subject Classification: Moment problems 44A60

PDF(click to download): On Characterization of Universal Centers of ODEs with Analytic Coefficients

Free Subgroups of the Group of Formal Power Series and the Center Problem for ODEs

C. R. Math. Rep. Acad. Sci. Canada Vol. 31 (4) 2009, pp. 97–106
Vol.31 (4) 2009
Alexander Brudnyi Details
(Received: 2009-05-11 )
(Received: 2009-05-11 )

Alexander Brudnyi, Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4; email: albru@math.ucalgary.ca

Abstract/Résumé:

The paper belongs to the area related to the famous Poincaré center-focus problem and contains a new necessary and sufficient condition for existence of a center for ordinary differential equations with coefficients derived algebraically from a certain “basic” class. This class consists of families of equations \(\frac{dv}{dx} = \sum_{j=1}^{\infty} a_j (x) \,v^{j+1}\) whose first return maps generate free subgroups of the group of formal power series. It is shown that such families form a sufficiently “massive” subset in the set of all possible equations as above. The paper contains various characterizations of this “basic” class. It follows the lines of the author’s approach to the center-focus problem (involving modern algebraic techniques) that already deepened the understanding of the problem.

Cet article porte sur le fameux problème du centre-foyer de Poincaré et contient une nouvelle condition nécessaire et suffisante pour l’existence d’un centre pour les équations diffèrentielles ordinaires avec des coéfficients derivés algébriquement d’une certaine classe de “base”. Cette classe consiste en des familles d’équations de la forme \(\frac{dv}{dx} = \sum_{j=1}^{\infty} a_j (x) \,v^{j+1}\) dont les premières fonctions de retour engendrent des sous groupes libres d’un groupe de séries entières formelles. On démontre que de telles familles forment un sous ensemble suffisamment “massif” dans l’ensemble de toutes les équations possible ci-dessus. L’article contient des diverses caractérisations de cette classe de “base”. Il poursuit les directions de l’auteur sur le problème du centre-foyer (selon les techniques algébraiques modernes) qui ont déjà approfondies les connaissances du problème.

Keywords: center problem, free group, the group of formal power series

AMS Subject Classification: Normal forms; center manifold theory; bifurcation theory 37L10

PDF(click to download): Free Subgroups of the Group of Formal Power Series and the Center Problem for ODEs

Center Problem for Odes with Coefficients Generating the Group of Rectangular Paths

C. R. Math. Rep. Acad. Sci. Canada Vol. 31 (2) 2009, pp. 33–44
Vol.31 (2) 2009
Alexander Brudnyi Details
(Received: 2009-02-02 )
(Received: 2009-02-02 )

Alexander Brudnyi, Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4; email: albru@math.ucalgary.ca

Abstract/Résumé:

We solve an analog of the Poincaré Center-Focus problem for the class of ordinary differential equations \(\frac{dv}{dx}=\sum_{i=1}^{\infty}a_{i}(x)\,v^{i+1}\), such that the first integrals of vectors of their coefficients determine rectangular paths in finite-dimensional complex vector spaces. In particular, we prove that all centers of such equations are universal, i.e., are determined by means of certain composition conditions. Also, we solve the Bautin problem on the number of periodic solutions with sufficiently small initial values for finite-dimensional families of such equations.

Nous résolvons l’analogue du problème du centre-foyer de Poincaré pour les équations différentielles ordinaires \(\frac{dv}{dx}=\sum_{i=1}^{\infty}a_{i}(x)\,v^{i+1}\) telles que les premières intégrales des vecteurs de leurs coefficients déterminent des chemins rectangulaires dans les espaces vectoriels complexes de dimension finie. En particulier, nous démontrons que tous les centres de telles équations sont universelles, c’est-à-dire déterminées par certaines conditions composées. De plus, nous résolvons le problème de Bautin sur le nombre de solutions périodiques ayant des valeurs initiales suffisamment petites pour les familles de dimension finie de telles équations..

Keywords: center problem, iterated integrals, the group of rectangular paths

AMS Subject Classification: Normal forms; center manifold theory; bifurcation theory 37L10

PDF(click to download):[Download not found]