Lipschitz curve — 1 articles found.

On Characterization of Universal Centers of ODEs with Analytic Coefficients

C. R. Math. Rep. Acad. Sci. Canada Vol. 35 (4) 2013, pp. 137–147
Vol.35 (4) 2013
Alexander Brudnyi Details
(Received: 2013-07-19 , Revised: 2013-09-17 )
(Received: 2013-07-19 , Revised: 2013-09-17 )

Alexander Brudnyi , Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, T2N 1N4; e-mail: albru@math.ucalgary.ca

Abstract/Résumé:

We present a solution of the problem of characterization of the universal centers of a differential equation $v’=\sum_{j=1}^n a_j v^{j+1}$ with all $a_j$ real analytic in a neighbourhood of $[a,b]\Subset\mathbb{R}$ in terms of the vanishing of finitely many moments determined by $a_1, \ldots, a_n$.

On présente la solution du problème de caractériser les centres universels d’une équation différentielle $v’=\sum_{j=1}^n a_j v^{j+1}$ dont tous les coefficients sont des fonctions analytiques réelles autour de $[a,b]\Subset\mathbb{R}$ en utilisant les ensembles des zéros d’un nombre fini des moments calculés en partant des fonctions $a_1, \ldots, a_n$

Keywords: Lipschitz curve, Moment, center problem, homology, polynomial approximation, unicursal curve

AMS Subject Classification: Moment problems 44A60

PDF(click to download): On Characterization of Universal Centers of ODEs with Analytic Coefficients