(Received: 2016-03-17
, Revised: 2016-05-22
)
(Received: 2016-03-17
, Revised: 2016-05-22
)
Yoshinori Hamahata,Department of Applied Mathematics, Okayama University of Science, Ridai-cho 1-1, Okayama, 700{0005, Japan; e-mail: hamahata@xmath.ous.ac.jp
Abstract/Résumé:
We establish a relation between polynomial power residue symbols and \(q\)-resultants of \(\mathbb{F}_q\)-linear polynomials. We then establish the \(q-1\)-st power reciprocity law.
On établit une relation entre le symbole de résidu de puissances en caractéristique \(p\) et le \(q\)-résultant de deux \(\mathbb{F}_q\)-polynômes linéaire. Alors on démontre la loi de réciprocité des puissances \(q-1\)-èmes.
Keywords: Power residues, function fields., reciprocity law
AMS Subject Classification:
Power residues; reciprocity, Drinfeld modules; higher-dimensional motives; etc., Arithmetic theory of polynomial rings over finite fields
11A15, 11G09, 11T55
PDF(click to download):
Polynomial Power Residue Symbols and $q$-resultants