15A21 — 2 articles found.

Interpolation Polynomials and Linear Algebra

C. R. Math. Rep. Acad. Sci. Canada Vol. 44 (2) 2022, pp. 33-49
Vol.44 (2) 2022
Askold Khovanskii, FRSC; Sushil Singla; Aaron Tronsgard Details
(Received: 2022-03-11 , Revised: 2022-04-05 )
(Received: 2022-03-11 , Revised: 2022-04-05 )

Askold Khovanskii, FRSC, University of Toronto, Toronto, Canada; e-mail: askold@math.toronto.edu

Sushil Singla, Department of Mathematics, Shiv Nadar University, Greater Noida, India 201314; e-mail: ss774@snu.edu.in

Aaron Tronsgard, University of Toronto, Toronto, Canada; e-mail: tronsgar@math.utoronto.ca

Abstract/Résumé:

We reconsider the theory of Lagrange interpolation polynomials with multiple interpolation points and apply it to linear algebra. In particular, we show that one can evaluate a meromorphic function at a matrix, using only an interpolation polynomial.

On reconsidère la thèorie des polynômes d’interpolation de Lagrange et l’applique à l’algèbre linéaire. En particulier, on peut évaluer une fonction méromorphe à une matrice seulement avec un polynôme d’interpolation.

Keywords: Cayley Hamilton theorem, Interpolation polynomials, meromorphic function at a matrix

AMS Subject Classification: Instructional exposition (textbooks; tutorial papers; etc.), , Canonical forms; reductions; classification, Interpolation 15-01, 15A16, 15A21, 41A05

PDF(click to download): Interpolation Polynomials and Linear Algebra

Group Actions on Filtered Modules and Finite Determinacy. Finding Large Submodules in the Orbit by Linearization

C. R. Math. Rep. Acad. Sci. Canada Vol. 38 (4) 2016, pp. 113-155
Vol.38 (4) 2016
Genrich Belitskii; Dmitry Kerner Details
(Received: 2015-07-20 , Revised: 2016-01-27 )
(Received: 2015-07-20 , Revised: 2016-01-27 )

Genrich Belitskii,Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be'er Sheva 84105, Israel; e-mail: genrich@math.bgu.ac.il

Dmitry Kerner,Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be'er Sheva 84105, Israel; e-mail dmitry.kerner@gmail.com

Abstract/Résumé:

Let \(M\) be a module over a local ring \(R\) and a group action \(G\circlearrowright M\), not necessarily \(R\)-linear. To understand how large is the \(G\)-orbit of an element \(z\in M\) one looks for the large submodules of \(M\) lying in \(Gz\). We provide the corresponding (necessary/sufficient) conditions in terms of the tangent space to the orbit, \(T_{(Gz,z)}\).

This question originates from the classical finite determinacy problem of Singularity Theory. Our treatment is rather general, in particular we extend the classical criteria of Mather (and many others) to a broad class of rings, modules and group actions.

When a particular ‘deformation space’ is prescribed, \(\Sigma\subseteq M\), the determinacy question is translated into the properties of the tangent spaces, \(T_{(Gz,z)}\), \(T_{(\Sigma,z)}\), and in particular to the annihilator of their quotient, \(ann\,{T_{(\Sigma,z)}}/{T_{(Gz,z)}}\).

Etant donné une action d’un groupe sur un module, \(G\circlearrowright M\), et un élément \(z\in M\), on étudie le plus grand sous-module de \(M\) contenu dans l’orbite \(Gz\). On donne des conditions nécessaires et suffisantes décrivant ce module en termes de l’espace tangent a l’orbite, \(T_{(Gz,z)}\). Cela prolonge les critères classiques de la théorie des singularités à une large classe d’anneaux, modules, et actions de groupes.

Keywords: Group actions, finite determinancy, matrix families, matrix singularities, modules over local rings, open orbits, sufficiency of jets

AMS Subject Classification: Deformations of singularities, Canonical forms; reductions; classification, Normal families of functions; mappings, Classification; finite determinacy of map germs, Normal forms 14B07, 15A21, 32A19, 58K40, 58K50

PDF(click to download): Group Actions on Filtered Modules and Finite Determinacy. Finding Large Submodules in the Orbit by Linearization