Murnaghan-Nakayama rule — 1 articles found.

Comments Related to Infinite Wedge Representations

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (1) 2017, pp. 13-35
Vol.39 (1) 2017
Nathan Grieve Details
(Received: 2016-06-30 , Revised: 2016-11-07 )
(Received: 2016-06-30 , Revised: 2016-11-07 )

Nathan Grieve,Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB,Canada E3B 5A3; e-mail:


We study the infinite wedge representation and show how it is related to the universal central extension of \(g[t,t^{-1}]\), the loop algebra of a complex semi-simple Lie algebra \(g\). We also give an elementary proof of the boson-fermion correspondence. Our approach to proving this result is based on a combinatorial construction combined with an application of the Murnaghan-Nakayama rule.

Nous étudions l’algèbre extérieure en dimension infinie et montrons comment elle est reliée à l’extension centrale universelle de \(g[t,\!t^{-1}]\), l’algèbre de lacets sur une algèbre de Lie \(g\) semi-simple complexe. De plus, nous donnons une preuve élémentaire de la correspondance boson-fermion. Pour ce faire, nous utilisons une construction combinatoire, ainsi que la règle de Murnaghan-Nakayama.

Keywords: Boson-fermion correspondence, Infinite wedge representation, Murnaghan-Nakayama rule

AMS Subject Classification: Symmetric functions, Completely integrable systems; integrability tests; bi-Hamiltonian structures; hierarchies (KdV; KP; Toda; etc.) 05E05, 37K10

PDF(click to download): Comments Related to Infinite Wedge Representations