matrix families — 1 articles found.

Group Actions on Filtered Modules and Finite Determinacy. Finding Large Submodules in the Orbit by Linearization

C. R. Math. Rep. Acad. Sci. Canada Vol. 38 (4) 2016, pp. 113-155
Vol.38 (4) 2016
Genrich Belitskii; Dmitry Kerner Details
(Received: 2015-07-20 , Revised: 2016-01-27 )
(Received: 2015-07-20 , Revised: 2016-01-27 )

Genrich Belitskii,Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be'er Sheva 84105, Israel; e-mail: genrich@math.bgu.ac.il

Dmitry Kerner,Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be'er Sheva 84105, Israel; e-mail dmitry.kerner@gmail.com

Abstract/Résumé:

Let \(M\) be a module over a local ring \(R\) and a group action \(G\circlearrowright M\), not necessarily \(R\)-linear. To understand how large is the \(G\)-orbit of an element \(z\in M\) one looks for the large submodules of \(M\) lying in \(Gz\). We provide the corresponding (necessary/sufficient) conditions in terms of the tangent space to the orbit, \(T_{(Gz,z)}\).

This question originates from the classical finite determinacy problem of Singularity Theory. Our treatment is rather general, in particular we extend the classical criteria of Mather (and many others) to a broad class of rings, modules and group actions.

When a particular ‘deformation space’ is prescribed, \(\Sigma\subseteq M\), the determinacy question is translated into the properties of the tangent spaces, \(T_{(Gz,z)}\), \(T_{(\Sigma,z)}\), and in particular to the annihilator of their quotient, \(ann\,{T_{(\Sigma,z)}}/{T_{(Gz,z)}}\).

Etant donné une action d’un groupe sur un module, \(G\circlearrowright M\), et un élément \(z\in M\), on étudie le plus grand sous-module de \(M\) contenu dans l’orbite \(Gz\). On donne des conditions nécessaires et suffisantes décrivant ce module en termes de l’espace tangent a l’orbite, \(T_{(Gz,z)}\). Cela prolonge les critères classiques de la théorie des singularités à une large classe d’anneaux, modules, et actions de groupes.

Keywords: Group actions, finite determinancy, matrix families, matrix singularities, modules over local rings, open orbits, sufficiency of jets

AMS Subject Classification: Deformations of singularities, Canonical forms; reductions; classification, Normal families of functions; mappings, Classification; finite determinacy of map germs, Normal forms 14B07, 15A21, 32A19, 58K40, 58K50

PDF(click to download): Group Actions on Filtered Modules and Finite Determinacy. Finding Large Submodules in the Orbit by Linearization

Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.