— 1407 articles found.
Classification of compact homogeneous manifolds with pseudo-Kählerian structures
Daniel Guan, Department of Mathematics, University of California at Riverside, Riverside, CA 92521, U.S.A.; e-mail: zguan@math.ucr.edu
Abstract/Résumé:
In this note we apply a modification theorem for compact homogeneous solvmanifolds to compact complex homogeneous manifolds with pseudo-Kählerian structures. We are then finally able to classify these compact pseudo-Kählerian manifolds as certain products of projective rational homogeneous spaces, tori, and simple and double reduced primitive pseudo-Kähler spaces.
Dans cette note, nous appliquons un théorème de modification pour des “solv-variétés” compactes et homogènes aux variétés compactes complexes equipées d’une structure pseudo-kählérienne. Nous obtenons une classification de ces variétés compactes pseudo-kählériennes sous la forme de certains produits d’espaces projectifs rationnels et homogènes, de tores, et d’espaces pseudo-kählériens réduits et primitifs simples ou doubles.
Keywords: Lie group, cohomology, compact manifolds, decompositions, fiber bundles, homogeneous space, invariant structure, modification, product, pseudo-Kahlerian, solvmanifolds, splittings, symplectic manifolds, uniform discrete subgroups
AMS Subject Classification:
General geometric structures on manifolds (almost complex; almost product structures; etc.)
53C15
PDF(click to download): Classification of compact homogeneous manifolds with pseudo-Kählerian structures
On AF embeddability of continuous fields
Marius Dadarlat, Department of Mathematics, Purdue University, 150 N. University St., West Lafayette, IN, 47907-2067, U.S.A.; email: mdd@math.purdue.edu
Abstract/Résumé:
Let \(A\) be a separable and exact \(C^*\)-algebra which is a continuous field of \(C^*\)-algebras over a connected, locally connected, compact metrizable space. If at least one of the fibers of \(A\) is AF embeddable, then so is \(A\). As an application we show that if \(G\) is a central extension of an amenable and residually finite discrete group by \(\mathbb{Z}^n\), then the \(C^*\)-algebra of \(G\) is AF embeddable.
Soit A une \(C^*\)-algèbre séparable et exacte qui est un champ continu de \(C^*\)-algèbres sur un espace connexe, localement connexe, compact et metrizable. Si au moins l’une des fibres de \(A\) est embeddable dans une AF algèbre donc la \(C^*\)-algèbre \(A\) est aussi. Comme application, nous montrons que si \(G\) est une extension centrale d’un groupe discret amenable et résiduellement fini par le groupe \(\mathbb{Z}^n\), alors la \(C^*\)-algèbre de \(G\) est embeddable dans une AF algèbre.
Keywords: AF algebras, amenable groups, continuous fields of C*-algebras
AMS Subject Classification:
General theory of $C^*$-algebras
46L05
PDF(click to download): On AF embeddability of continuous fields
On controllability of partially prescribed pairs of matrices
Gloria Cravo, Departamento de Matematica e Universidade da Madeira, 9000-390 Funchal, Madeira, Portugal; email: gcravo@uma.pt
Abstract/Résumé:
Let \(F\) be an infinite field and let \(n,p_{1},p_{2},p_{3}\) be positive integers such that \(n=p_{1}+p_{2}+p_{3}.\) Let \[(C_{1},C_{2})=\left( \begin{bmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{bmatrix} , \begin{bmatrix} C_{1,3} \\ C_{2,3} \end{bmatrix} \right) ,\] where the blocks \(C_{i,j}\) are of type \(p_{i}\times p_{j},i\in \{1,2\},j\in \{1,2,3\}.\) We analyse the possibility of the pair \((C_{1},C_{2})\) being completely controllable, when
(i) \(C_{1,2},\) \(C_{1,3}\), and \(C_{2,1}\) are fixed and the other blocks vary;
(ii) \(C_{1,1},\) \(C_{1,2}\), and \(C_{2,1}\) are fixed and the other blocks vary.
We still describe the possible characteristic polynomials of a partitioned matrix of the form \(C=[ C_{i,j}] \in F^{n\times n},\) where the blocks \(C_{i,j}\) are of type \(p_{i}\times p_{j},i,j\in \{1,2,3\}\), when one of the conditions (i) or (ii) occurs.
Soit \(F\) un corps infini et soient \( n,p_{1},p_{2},p_{3}\) des entiers positifs tels que \(n=p_{1}+p_{2}+p_{3}.\) Soit \[(C_{1},C_{2})=\left( \begin{bmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{bmatrix} , \begin{bmatrix} C_{1,3} \\ C_{2,3} \end{bmatrix} \right) ,\] où les blocs \(C_{i,j}\) sont de type \(p_{i}\times p_{j},i\in \{1,2\},j\in \{1,2,3\}.\) Nous établions conditions pour lesquelles \((C_{1},C_{2})\) est controllable, quand
(i) \(C_{1,2},C_{1,3}\), et \(C_{2,1}\) sont connus et les autres blocs varient;
(ii) \(C_{1,1},C_{1,2}\), et \(C_{2,1}\) sont connus et les autres blocs varient.
Soit \(C=[ C_{i,j}] \in F^{n\times n},\) où les blocs \(C_{i,j}\) sont de type \(p_{i}\times p_{j},i,j\in \{1,2,3\}.\) Nous étudions le polynôme caractéristique de la matrice \(C,\) quand une des conditions (i) ou (ii) est satisfait.
Keywords: characteristic polynomials, controllability, matrix completion problems
AMS Subject Classification:
Eigenvalues; singular values; and eigenvectors
15A18
PDF(click to download): On controllability of partially prescribed pairs of matrices
A note on projection equivalence in von Neumann algebras
Richard V. Kadison, Mathematics Department, University of Pennsylvania, Philadelphia, PA 19104-6395 U.S.A. and Mathematics Department, Louisiana State University, Baton Rouge, LA 70803 U.S.A.; email: kadison@math.upenn.edu
Abstract/Résumé:
A new structural result in the comparison theory of projections for von Neumann algebras is proved: two monotone-increasing nets of projections indexed by the same directed set have unions that are equivalent when pairs of projections with the same index are equivalent. The same is not true, in general, for intersections of monotone-decreasing nets of projections. Counterexamples are given indicating limitations on extensions, variants, and methods for proving that result.
Keywords: Murray-von Neumann equivalence, von Neumann algebra
AMS Subject Classification:
46L
PDF(click to download): A note on projection equivalence in von Neumann algebras
An affine Bezout type theorem and projective completions of affine varieties
Pinaki Mondal, Department of Mathematics, University of Toronto, Toronto, ON; email: pinaki@math.toronto.edu
Abstract/Résumé:
We study projective completions of affine algebraic varieties that are given by filtrations on their rings of regular functions, including a formula for their degrees. For a quasifinite polynomial map \(P\) (i.e., with all fibers finite) of affine varieties, we prove that there are completions of the source that do not add points at infinity for \(P\) (i.e., in the intersection of completions of the hypersurfaces corresponding to a generic fiber and determined by the component functions of \(P\)). Moreover, we show that there are “finite type” completions with the latter property determined by “degree-like functions” that can be expressed as the maximum of a finite number of “semidegrees”, i.e., maps of the ring of regular functions excluding zero, into integers, which send products into sums and sums into maxima (with a possible exception when the summands have the same semidegree). We characterize the latter type filtrations as the ones for which the ideal of the “hypersurface at infinity” is radical. Moreover, we establish a one-to-one correspondence between the collection of minimal associated primes of the latter ideal and the unique minimal collection of semidegrees needed to define the corresponding degree-like function. We also prove an “affine Bezout type” theorem for quasifinite polynomial maps \(P \colon \mathbb{C}^n \to \mathbb{C}^n\) which admit completions that do not add points at infinity for \(P\) and are determined by semidegrees.
Nous étudions les complétions projectives de variétés affines algébriques qui sont données par des filtrations sur leurs anneaux des fonctions régulières, y compris une formule pour leurs degrés. Pour une application quasifinie polynomiale \(P\) (c’est-à-dire avec toutes les fibres finies) affine de variétés, nous prouvons qu’il existe des complétions de la source qui n’ajoutent aucun point à l’infini pour \(P\) (c’est-à-dire à l’intersection des complétions des hypersurfaces correspondantes à une fibre générique et déterminée par les fonctions composantes de \(P\)). De plus, nous montrons qu’il existe de “type fini” complétions avec cette dernière propriété determinée par des “fonctions de type degré” qui peut être exprimé comme les maxima d’un nombre fini de ‘semidegrés’, c’est-à-dire les applications de l’anneau des coordonnées, moins zéro, sur les entiers, qui envoient des produits aux sommes et les sommes aux maxima (avec une exception possible lorsque les monômes à additionner ont les mêmes semidegrés). Nous caractérisons les filtrations du dernier type comme celles pour qui l’idéal de l’hypersurface ‘à l’infini’ est radical. En outre, nous établissons une correspondance bijective entre la collection des premiers minimaux associés à ce dernier idéal et la collection minimale unique de semidegrés nécessaires pour la définition de la fonction pareille au degré correspondante. Nous démontrons aussi un théorème du ‘type de Bézout affine’ pour applications quasifinies polynomiales \(P \colon \mathbb{C}^n \to \mathbb{C}^n\) qui admettent des complétions qui n’ajoutent aucun point à l’infini pour \(P\) et sont déterminées par des semidegrés.
Keywords: affine Bezout type, completion, degree of completion, degree-like function, projective completion, quasi-degree, semidegree
AMS Subject Classification:
Varieties and morphisms
14A10
PDF(click to download): An affine Bezout type theorem and projective completions of affine varieties
Towards an optimal result on unique continuation for solutions of Schrödinger operators
D. Kinzebulatov, Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4; email: dkinzl@math.toronto.edu
Abstract/Résumé:
Towards an optimal result on unique continuation for solutions of Schrödinger operators Resume/Abstract: We establish the property of unique continuation (also known as quasianalyticity property for \(C^{\infty}\) functions) for functions \(u\) satisfying a differential inequality \(|\Delta u| \leq |V| \, |u|\) with potentials \(V\) from a wide class of functions (including locally \(L^{\frac{d}{2},\infty}(\mathbb{R}_d)\) spaces) for which the self-adjoint Schrödinger operator is well defined.
Motivating question: Is it true that for potentials \(V\), for which the self-adjoint Schrödinger operator is well defined, its eigenfunctions satisfy the unique continuation property?
On montre la propriété de l’extension unique (également connue comme quasianaliticité des fonctions \(C^{\infty}\)) des fonctions \(u\) qui satisfout l’inégalité differentiel \(|\Delta u| \leq |V| \, |u|\) avec des potentiels \(V\) d’une grande classe de fonctions (y compris des espaces \(L^{\frac{d}{2},\infty}(\mathbb{R}_d)\)) pour lesquelles l’opérateur auto-adjoint de Schrödinger est bien défini.
Pour motiver la question: est-ce que les fonctions propres de tous les potentiels \(V\) pour qui l’opérateur auto-adjoint de Schrödinger est bien défini satisfait la propriété d’extension unique?
Keywords: Schrodinger operators, unique continuation
AMS Subject Classification:
Continuation and prolongation of solutions of PDE
35B60
PDF(click to download): Towards an optimal result on unique continuation for solutions of Schrödinger operators
A note on Gagliardo–Nirenberg type inequalities on analytic sets
D. Kinzebulatov, Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4; email: dkinzl@math.toronto.edu
L. Shartser, Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4; email: shartl@math.toronto.edu
Abstract/Résumé:
Given an analytic set \(X\) and \(x \in X\), we show that \(X\) admits (in a relatively compact neighbourhood of \(x\)) a modified Gagliardo–Nirenberg inequality, depending on a certain exponent \(s \geq 1\) (\(s=1\) in case of a manifold). The infimum of the set of all such \(s\) characterizes, in a sense, the type of singularity at \(x\).
Etant donné un ensemble analytique \(X\) et \(x \in X\), nous montrons que \(X\) admet (dans un voisinage relativement compact de \(x\)) une inégalité de Gagliardo–Nirenberg modifiée, en fonction d’un certain exposant \(s \geq 1\) (\(s=1\) dans le cas d’une variété). La borne inférieure de l’ensemble de tous ces \(s\) caractérise, en un sens, le type de singularité en \(x\).
Keywords: Gaglardo–Nirenberg inequality, analytic sets, resolution of singularities
AMS Subject Classification:
Local singularities
32S05
PDF(click to download): A note on Gagliardo--Nirenberg type inequalities on analytic sets
The global dimension of the endomorphism ring of a generator-cogenerator for a hereditary Artin algebra
Vlastimil Dlab, School of Mathematics and Statistics, Carleton University, Ottawa, ON K1S 5B6; email: dlab@math.carleton.ca
Claus Michael Ringel, Fakultat fur Universitat Bielefeld, D-33 501 Bielefeld, Germany; email: ringel@math.uni-bielefeld.de
Abstract/Résumé:
Let \( \Lambda\) be a hereditary Artin algebra and \( M\) a \( \Lambda\)-module that is both a generator and a cogenerator. We are going to describe the possibilities for the global dimension of \( \textrm{End}(M)\) in terms of the cardinalities of the Auslander–Reiten orbits of indecomposable \( \Lambda\)-modules.
Soit \( \Lambda\) une algèbre d’Artin héréditaire et \( M\) un \( \Lambda\)-module qui est un générateur-cogénérateur. Nous allons décrire toutes les possibilités pour la dimension globale de \( \textrm{End}(M)\) à l’aide des cardinalités des orbites d’Auslander–Reiten des \( \Lambda\)-modules indécomposables.
Keywords: hereditary Artin algebras, representation dimension
AMS Subject Classification:
Homological dimension
16E10
PDF(click to download): The global dimension of the endomorphism ring of a generator-cogenerator for a hereditary Artin algebra
On Multipliers for the Hilbert Space of a Hypergroup
A. Azimifard, Mathematics Department, Stony Brook University, Stony Brook, NY, 11794-3651 U.S.A.; email: azimifard@math.sunysb.edu
Abstract/Résumé:
In this note we characterize the multiplier algebra for the Hilbert space of a commutative hypergroup.
Dans cette note, nous charactérisons l’algèbre des multiplicateurs pour l’espace hilbertien d’un hypergroupe commutatif.
Keywords: hypergroup, multiplier
AMS Subject Classification:
Hypergroups
43A62
PDF(click to download): On Multipliers for the Hilbert Space of a Hypergroup
On the existence of Hamiltonian paths connecting Lagrangian submanifolds
Nassif Ghoussoub, Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2; email: nassif@math.ubc.ca
Abbas Moameni, Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2; email: moameni@math.ubc.ca
Abstract/Résumé:
We use a new variational method—based on the theory of anti-selfdual Lagrangians developed recently—to establish the existence of solutions of convex Hamiltonian systems that connect two given Lagrangian submanifolds in \(\mathbb{R}^{2N}\). We also consider the case where the Hamiltonian is only semi-convex. A variational principle is also used to establish existence for the corresponding Cauchy problem.
Une nouvelle méthode variationnelle—basée sur la théorie des Lagrangiens auto-adjoints developée récemment—est utilisée pour établir l’existence de solutions de systèmes Hamiltoniens convexes, qui connectent deux sous-variétés Lagrangiennes données dans \(\mathbb{R}^{2N}\). On considère aussi le cas des Hamiltoniens semi-convexes, ainsi que le problème de Cauchy correspondant.
Keywords: Hamiltonian systems, Lagrangian submanifolds, self-duality
AMS Subject Classification:
Hamiltonian structures; symmetries; variational principles; conservation laws
37K05
PDF(click to download): On the existence of Hamiltonian paths connecting Lagrangian submanifolds
Remarks on some recent fixed point theorems
S.L. Singh, Department of Mathematics, Gurukula Kangri University, Hardwar, India, and 21, Govind Nagar, Rishikesh 249201, India; email: vedicmri@gmail.com
Rajendra Pant, Department of Mathematics, S.P.R.C. Post Graduate College, Rohalki-Kishanpur, Hardwar, India; email: pant.rajendra@gmail.com
Abstract/Résumé:
We obtain fixed and common point theorems generalizing fixed point theorems of W. A. Kirk and T. Suzuki for Banach and Meir–Keeler type asymptotic contractions.
Nous démontrons des théorèmes de points fixes et de points communs qui généralisent des théorèmes de points fixes du type de Banach et de Meir–Keeler pour les contractions asymptotiques.
Keywords: Banach contraction, Meir–Keeler type asymptotic contraction, asymptotic contraction, fixed point
AMS Subject Classification:
Fixed-point and coincidence theorems
54H25
PDF(click to download): Remarks on some recent fixed point theorems
Diophantine inequality for equicharacteristic excellent Henselian local domains
Hirotada Ito, Interdisciplinary Graduate School of Science and Engineering, Kinki University, Higashi-Osaka 577-8502, Japan; email: reen.salt.7125-8753@s6.dion.ne.jp
Shuzo Izumi, Department of Mathematics, Kinki University, Higashi-Osaka 577-8502, Japan; email: sizmsizm@gmail.com
Abstract/Résumé:
G. Rond has proved a Diophantine type inequality for the field of quotients of the convergent or formal power series ring in multivariables. We generalize his theorem to the field of the quotients of an excellent Henselian local domain in equicharacteristic case.
G. Rond a démontré une inégalité de type diophantien pour le corps des quotients de séries convergentes (ou formelles) à plusieurs variables. On fait ici une généralisation de son théorème au corps des quotients d’un anneau local intégral henselien excellent dans le cas équi-caractéristique.
Keywords: Diophantine inequality, associated valuations, linear Artin approximation property, m-valuation
AMS Subject Classification:
Valuation rings
13F30
PDF(click to download): Diophantine inequality for equicharacteristic excellent Henselian local domains
Factorization of an indefinite convection-diffusion operator
Marina Chugunova, Department of Mathematics. University of Toronto, Toronto, Ontario M5S 2E4 Canada; email: chugunom@math.toronto.edu
Vladimir Strauss, Department of Mathematics, Universidad Simon Bolıvar, Caracas 1080, Venezuela; email: str@usb.ve
Abstract/Résumé:
We prove that a certain non-self-adjoint differential operator admits factorization, and we apply this new representation of the operator to explicitly construct its domain. We also show that the operator is J-self-adjoint in a Krein space.
On montre qu’un certain opérateur non autoadjoint admet une factorisation et, on utilise cette représentation pour construire explicitement son domaine. On montre aussi que cet opérateur est J-autoadjoint dans un espace de Krein.
Keywords: J-self-adjoint, Krein space, backward-forward heat equation, factorization, fluid mechanics
AMS Subject Classification:
Operators belonging to operator ideals (nuclear; $p$-summing; in the Schatten-von Neumann classes; etc.)
47B10
PDF(click to download): Factorization of an indefinite convection-diffusion operator
Hypergroups with unique $\alpha$-means
Ahmadreza Azimifard, Dietlinden Strasse 16, 80802 Munchen, Bayern, Deutschland; email: azimifard@hotmail.de
Abstract/Résumé:
Let \(K\) be a commutative hypergroup and \(\alpha\in \widehat{K}\). We show that \(K\) is \(\alpha\)-amenable with the unique \(\alpha\)-mean \(m_\alpha\) if and only if \(m_\alpha \in L^1(K) \cap L^2(K)\) and \(\alpha\) is isolated in \(\widehat{K}\). In contrast to the case of amenable noncompact locally compact groups, examples of polynomial hypergroups with unique \(\alpha\)-means (\(\alpha \not= 1\)) are given. Further examples emphasize that the \(\alpha\)-amenability of hypergroups depends heavily on the asymptotic behavior of Haar measures and characters.
Soit \(K\) un hypergroupe commutatif et \(\alpha\in \widehat{K}\). Nous montrons que \(K\) est \(\alpha\)-moyennable avec unicité de l’\(\alpha\)-moyenne \(m_\alpha\) si et seulement si \(m_\alpha \in L^1(K) \cap L^2(K)\) et \(\alpha\) est isolé dans \(\widehat{K}\). Contrairement au cas des groupes moyennables localement compacts mais non compacts, des exemples d’hyper-groupes polynomiaux avec unicité des \(\alpha\)-moyennes (\(\alpha \not= 1\)) sont donnés. Nous montrons à l’aide d’autres examples que l’\(\alpha\)-moyennabilité des hypergroupes dépend fortement de leurs mesures de Haar ainsi que du comportement des caractères.
Keywords: hypergroups of Nevaei classes, orthogonal polynomial hypergroups, α-amenable hypergroups
AMS Subject Classification:
Hypergroups
43A62
PDF(click to download): Hypergroups with unique $alpha$-means
On the cycles of indefinite binary quadratic forms and cycles of ideals III
Ahmet Tekcan, Uludag University, Faculty of Science, Department of Mathematics, Gorukle, Bursa, Turkiye; email: tekcan@uludag.edu.tr
Abstract/Résumé:
Let \(\delta\) be a real quadratic irrational integer with trace \(t = \delta+\overline{\delta}\) and norm \(n = \delta.\overline{\delta}\). Then for a real quadratic irrational \(\gamma \in \mathbb{Q}(\delta)\), there are rational integers \(P\) and \(Q\) such that \(\gamma = \frac{P+\delta}{Q}\) with \(Q|(\delta+P) (\overline{\delta}+P)\). So for each \(\gamma\), we have an ideal \(I_{\gamma} = [Q,P+\delta]\) and an indefinite quadratic form \(F_{\gamma}(x,y) = Q(x+\delta y) (x+\overline{\delta}y)\) of discriminant \(\Delta = t^2-4n\). In this work, we derive some properties of \(I_{\gamma}\) and \(F_{\gamma}\) for some specific values of \(\delta\).
Soit \(\delta\) un entier irrationel quadratique réel de trace \(t = \delta+\overline{\delta}\) et norme \(n = \delta.\overline{\delta}\). Pour un irrationel quadratique réel \(\gamma \in \mathbb{Q}(\delta)\), il existe des entiers rationels \(P\) et \(Q\) tels que \(\gamma = \frac{P+\delta}{Q}\) avec \(Q|(\delta+P) (\overline{\delta}+P)\). Ainsi pour chaque \(\gamma\), on a un idéal \(I_{\gamma} = [Q,P+\delta]\) et une forme quadratique indéfinie \(F_{\gamma} (x,y) = Q(x+\delta y) (x+\overline{\delta}y)\) de discriminant \(\Delta = t^2-4n\). On déduit quelques propriétés de \(I_{\gamma}\) et \(F_{\gamma}\) pour certains valeurs de \(\delta\).
Keywords: cycles of forms, cycles of ideals, ideals, quadratic forms
AMS Subject Classification:
Quadratic forms over general fields
11E04
PDF(click to download): On the cycles of indefinite binary quadratic forms and cycles of ideals III
On the volume of unit vector fields on Riemannian three-manifolds
Domenico Perrone, Dipartimento di Matematica “E. De Giorgi”, Universita del Salento, 73100 Lecce, Italy; email: domenico.perrone@unile.it
Abstract/Résumé:
H. Gluck and W. Ziller proved that the Hopf vector fields, namely, the unit Killing vector fields, are the unique unit vector fields on the unit sphere \(S^3\) that minimize the functional volume. The authors proved this important and famous result by using the method of “calibrated geometries” of Federer and Harvey–Lawson. In this paper, by using a different method, we get an analogue of Gluck and Ziller’s theorem for a compact Sasakian three-manifold with Webster scalar curvature \(w\geq 1\). Moreover, our method gives a new proof of Gluck and Ziller’s theorem. We also extend a theorem of F. Brito about the energy of unit vector fields.
H. Gluck et W. Ziller prouvèrent que les champs de Hopf, c’est-á-dire, les champs vectoriels unitaires de Killing, sont les seuls champs vectoriels unitaires sur la sphére unitaire \(S^3\) que minimisent le volume fonctionnel. Ils prouvèrent cet résultat important en utilisant la méthode des “géométries calibrées” de Federer et Harvey–Lawson. Dans cet article, en utilisant une méthode différente, nous obtenons l’analogue du théorème de Gluck et Ziller pour une 3-variété compact de Sasaki avec courbure scalaire de Webster \(w\geq 1\). En outre, notre méthode donne une nouvelle démonstration du théorème de Gluck et Ziller. Nous aussi étendons un théorème de Brito concernant l’énergie de champs vectoriels unitaires.
Keywords: Killing vector fields, compact Sasakian three-manifolds, energy functional, volume functional
AMS Subject Classification:
Global Riemannian geometry; including pinching
53C20
PDF(click to download): On the volume of unit vector fields on Riemannian three-manifolds
On the naturality of the exterior differential
Vladimir Goldshtein, Department of Mathematics, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva, Israel; email: vladimir@bgumail.bgu.ac.il
Marc Troyanov, Institut de Geometrie, algebre (IGAT), Batiment BCH, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland; email: marc.troyanov@epfl.ch
Abstract/Résumé:
We give sufficient conditions for the naturality of the exterior differential under Sobolev mappings. In other words we study the validity of the equation \(d\, f^* \alpha = f^*\, d\alpha\) for a smooth form \(\alpha\) and a Sobolev map \(f\).
Nous donnons des conditions suffisantes pour la validité de la naturalité de la différentielle extérieure par rapport à une application dans un espace de Sobolev. Autrement dit, nous étudions la validité de l’équation \(d\, f^* \alpha = f^*\, d\alpha\) pour une forme différentielle lisse \(\alpha\) et une application de Sobolev \(f\).
Keywords: Sobolev mappings, differential forms
AMS Subject Classification:
Sobolev spaces and other spaces of ``smooth'' functions; embedding theorems; trace theorems
46E35
PDF(click to download): On the naturality of the exterior differential
The Range of the Orbit Operator and Invariant Subspaces
Robin J. Deeley, Department of Mathematics and Statistics, University of Victoria, PO Box 3060 Stn CSC, Victoria, BC Canada V8W 3R4; email: rjdeeley@uvic.ca
Abstract/Résumé:
To a bounded linear operator and a vector in the Hilbert space on which it acts we associate a linear map which we call the orbit operator. We prove a number of results linking properties of the range of the orbit operator to the existence of invariant subspaces of the original operator.
On associe à un opérateur \(T\) et un vecteur \(x\) dans un espace de Hilbert, un opérateur “d’orbite” \(\mathcal{O}_T^{e_i}(x)\), et on démontre des résultats reliant les propriétés de l’image de \(O^{e_i}_T(x)\) et des sous-espaces invariants de \(T\).
Keywords: contractions, cyclic vectors, invariant subspaces
AMS Subject Classification:
Invariant subspaces
47A15
PDF(click to download): The Range of the Orbit Operator and Invariant Subspaces
Cauchy Type Integrals and a $D$-Moment Problem
V.A. Kisunko, Department of Mathematics, University of Toronto, Toronto, ON M5S 1A1; e-mail: vkisunko@math.toronto.edu
Abstract/Résumé:
We consider a Cauchy-type integral \(F(z)= \int_{\Gamma} \frac {g(\xi)\,\d \xi}{\xi-z}\), where \(g\) is a piecewise analytic function satisfying an \(n\)-th order linear homogeneous differential equation \(Ly=\frac{\d^n y}{\d z^n} + c_{n-1}\frac{\d^{n-1}}{\d z^{n-1}} +\dots+ c_0y=0\) with coefficients \(c_k \in \C(z)\) rational functions. Our main theorem asserts that the function \(F\) satisfies a linear non-homogeneous equation \(Ly=R\) with \(R\) a rational function. The precise description of \(R\) leads to the solution of a vanishing problem and to the solution of a moment-type problem, which we call D-moment problem.
On considère une integrale du type Cauchy \(F(z)= \int_{\Gamma} \frac {g(\xi)\d \xi}{\xi-z}\), où \(g\) est une fonction analytique par morceaux satisfaisant une équation différentielle linéaire homogène d’ordre \(n\), \(Ly=\frac{\d^n y}{\d z^n} + c_{n-1}\frac{\d^{n-1}}{\d z^{n-1}} +\dots+ c_0y=0\), aux coefficients \(c_k\in \C(z)\) rationnels. Notre théorème principal affirme que la fonction \(F\) satisfait une équation linéaire non-homogène \(Ly=R\) avec \(R\) rationnelle. La description précise de \(R\) mène à la solution du problème d’évanescence et à la solution d’un problème du type moment que nous appelons problème de D-moment.
Keywords: Cauchy type integral, D-moment problem, piecewise polynomial moment problem, vanishing problem
AMS Subject Classification:
Moment problems; interpolation problems
30E05
PDF(click to download): Cauchy Type Integrals and a $D$-Moment Problem
Signal Acquisition from Measurements via Non-Linear Models
N. Sarig, Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel; e-mail: niv.sargi@weizmann.ac.il
Y. Yomdin, Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel; e-mail: yosef.yomdin@weizmann.ac.il
Abstract/Résumé:
We consider the problem of reconstruction of a non-linear finite-parametric model \(M=M_p(x)\) with \(p=(p_1,\dots,p_r)\) a set of parameters, from a set of measurements \(m_j(M)\). In this paper \(m_j(M)\) are always the moments \(m_j(M)=\int x^jM_p(x)\,dx\). This problem is a central one in signal processing, statistics, and in many other applications.
We concentrate on a direct (and somewhat “naive“) approach to the above problem: we simply substitute the model function \(M_p(x)\) into the measurements \(m_j\) and compute explicitly the resulting “symbolic” expressions of \(m_j(M_p)\) in terms of the parameters \(p\). Equating these “symbolic" expressions to the actual measurement results, we produce a system of nonlinear equations in the parameters \(p\), which we then try to solve.
The aim of this paper is to review some recent results in this direction, stressing the algebraic structure of the arising systems and mathematical tools required for their solution.
In particular, we discuss the relation of the reconstruction problem above with recent results on the vanishing problem for generalized polynomial moments and on the Cauchy-type integrals of algebraic functions.
Nous étudions le problème de reconstruction d’un modèle non-linéaire parametrisé \(M=M_p(x)\), aux paramètres \(p=(p_1,\dots,p_r)\), à partir d’un ensemble de mesures \(m_j(M)\). Dans cet article les \(m_j(M)\) sont des moments \(m_j(M)=\int x^j M_p(x) \,dx\). Ce problème est central dans le traitement du signal, dans les statistiques et dans bien d’autres domaines.
Nous nous concentrons sur une approche directe (et un peu “naîve“) du problème décrit ci-dessus: nous substituons simplement la fonction modèle \(M_p(x)\) dans les mesures \(m_j\) et calculons explicitement l’expression symbolique résultant de \(m_j(M_p)\) en fonction des paramètres \(p\). En comparant ces expressions “symboliques” aux vraix valeurs des mesures, nous produisons un système d’équations non-linéaires en \(p\), que nous essayons de résoudre.
Le but de cet article est d’examiner des résultats récents qui vont dans cette direction, tout en insistant sur la structure algébrique des systèmes qui interviennent et des outils mathématiques nécessaires pour leur solution.
En particulier nous discuterons la relation du problème de reconstruction décrit ci-dessus aux résultats récents sur le problème des zéros des moments polynomiaux généralisés et sur les intégrales du type Cauchy des fonctions algébriques.
Keywords: moment inversion, non-linear models, signal acquisition
AMS Subject Classification:
General nonlinear regression
62J02
PDF(click to download): Signal Acquisition from Measurements via Non-Linear Models
Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.