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SIGNAL ACQUISITION FROM MEASUREMENTS

VIA NON-LINEAR MODELS
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Abstract. We consider the problem of reconstruction of a non-
linear finite-parametric model M = Mp(x) with p = (p1, . . . , pr) a set of
parameters, from a set of measurements mj(M). In this paper mj(M) are
always the moments mj(M) =

∫
xjMp(x) dx. This problem is a central

one in signal processing, statistics, and in many other applications.

We concentrate on a direct (and somewhat “naive”) approach to the
above problem: we simply substitute the model function Mp(x) into the
measurements mj and compute explicitly the resulting “symbolic” expres-
sions of mj(Mp) in terms of the parameters p. Equating these “symbolic”

expressions to the actual measurement results, we produce a system of
nonlinear equations in the parameters p, which we then try to solve.

The aim of this paper is to review some recent results in this direction,
stressing the algebraic structure of the arising systems and mathematical
tools required for their solution.

In particular, we discuss the relation of the reconstruction problem

above with recent results on the vanishing problem for generalized poly-
nomial moments and on the Cauchy-type integrals of algebraic functions.

Résumé. Nous étudions le problème de reconstruction d’un modèle
non-linéaire parametrisé M = Mp(x), aux paramètres p = (p1, . . . , pr), à
partir d’un ensemble de mesures mj(M). Dans cet article les mj(M) sont

des moments mj(M) =
∫
xjMp(x) dx. Ce problème est central dans le

traitement du signal, dans les statistiques et dans bien d’autres domaines.

Nous nous concentrons sur une approche directe (et un peu “nâıve”) du
problème décrit ci-dessus: nous substituons simplement la fonction modèle
Mp(x) dans les mesures mj et calculons explicitement l’expression symbo-

lique résultant de mj(Mp) en fonction des paramètres p. En comparant ces
expressions “symboliques” aux vraix valeurs des mesures, nous produisons
un système d’équations non-linéaires en p, que nous essayons de résoudre.

Le but de cet article est d’examiner des résultats récents qui vont dans
cette direction, tout en insistant sur la structure algébrique des systèmes qui

interviennent et des outils mathématiques nécessaires pour leur solution.

En particulier nous discuterons la relation du problème de reconstruc-
tion décrit ci-dessus aux résultats récents sur le problème des zéros des
moments polynomiaux généralisés et sur les intégrales du type Cauchy des
fonctions algébriques.
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1. Introduction In this paper we consider the following problem: let a
finite-parametric family of functions M = Mp(x), x ∈ R

m be given with p =
(p1, . . . , pr) a set of parameters. We call Mp(x) a model, and usually we assume
that it depends on some of its parameters in a non-linear way (this is always the
case with the “geometric” parameters representing the shape and the position
of the model).

The problem is how to reconstruct, in a robust and efficient way, the param-
eters p from a set of “measurements” m1(M), . . . ,ml(M)?

In this paper mj will be the moments mj(M) =
∫

xjMp(x) dx. This assump-
tion is not too restrictive (see [11,13]).

The above problem is certainly among the central ones in signal processing
(non-linear matching), statistics (non-linear regression), and in many other ap-
plications. See [11,13,18,27–30,46] and the references therein.

We concentrate in the present paper on a direct (and somewhat “naive”) ap-
proach to the above problem: we simply substitute the model function Mp(x)
into the measurements mj and compute explicitly the resulting “symbolic” ex-
pressions of mj(Mp) in terms of the parameters p. Equating these “symbolic”
expressions to the actual measurement results, we produce a system of nonlinear
equations on the parameters p which we try to solve.

Certainly, the polynomial moments do not present the best choice of mea-
surements for practical applications since the monomials xj are far from being
orthogonal (see, for example, [45]). However, the main features of the arising
non-linear systems remain the same for a much wider class of measurements,
while their structure is much more transparent for moments.

The aim of this paper is to review some recent results (mostly of [11, 13, 18,
19, 27–30, 46]) in this direction, stressing the algebraic structure of the arising
systems and mathematical tools required for their solutions. In particular, we
stress the role of the moment generating function.

We start with some initial examples of the models Mp(x) in one dimension:
these are polynomials and rational functions. Then we consider linear combi-
nations of δ-functions. The system which appears in this example is typical in
many applications. We discuss one of the classical solution methods following
[13,18,27,36,46].

Next we deal with the piecewise-solution of linear differential equations, pro-
viding some prerequisites for the reconstruction method described in [24] (this
issue). Then we consider piecewise-algebraic functions of one variable. We prove
injectivity of the finite moment transform on such functions, and discuss the
relation of the reconstruction problem for such functions with recent results on
the vanishing problem of generalized polynomial moments [2, 4, 5, 7, 31,33,34].

In two dimensions we shortly present results concerning reconstruction of poly-
gons from their complex moments [13,18,29], as well as results on reconstruction
of “quadrature domains” [19]. Finally we consider the problem of reconstruc-
tion of δ-functions along algebraic curves, relating it to the vanishing problem
of double moments [1, 2, 9, 21,22,35].

We barely touch the classical moment theory, referring the reader to [32] and
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especially to [19, 20, 37–40, 45], where, in particular, a review of the classical
results and methods is given, as applied to the effective reconstruction problem.
We also do not discuss the problem of noise resistance in this paper. It is treated
in [13,18,27,28,30].

1.1. Applicability of the “direct substitution” method The key condition for
applicability of our approach is the assumption that the signals we work with
can be faithfully approximated by a priori known “simple” geometric models.

A natural question is to what extent is this assumption realistic? The answer
to this question is twofold:
• In many specific applications the form of the signal is indeed known a pri-

ori. Besides the wide circle of applications mentioned in [11,13,18,27–30,46],
notice that this is usually the case in visual quality inspection. Similar situa-
tions arise in some medical applications where a non-linear parametric model
of an important pattern has to be matched to the radiology or ultrasound
measurements data.

• A general applicability of our approach in problems involving image acqui-
sition, analysis and processing depends on a possibility to represent general
images of the real world via geometric models.

The importance of such a representation in many imaging problems, from still
and video-compression to visual search and pattern detection, is well known.
Some initial implementations of geometric image “modelization” have been sug-
gested, in particular, [3, 14, 15, 26]. See [15] and the references therein for a
general overview and analysis of the performance of edges-based methods in
image representation.

However, in general the “geometric” methods currently suffer from an inability
to achieve a full visual quality for high resolution photo-realistic images of the
real world. In fact, the mere possibility of faithfully capturing such images with
geometric models presents one of the important open problems, sometimes called
“the vectorization problem”, in image processing.

Certainly, this current state of affairs makes problematic immediate practical
applications of general imaging methods based on a geometric model.

Let us express our strong belief that a full visual quality geometric-model
representation of high resolution photo-realistic images is possible. If achieved,
it promises a major advance in image compression, capturing, and processing,
in particular, via the approach of the present paper.

Recently some “semi-linear” approaches have emerged providing a reliable re-
construction of “simple” (and not necessarily regular) signals from a small num-
ber of measurements. In these approaches (see [6,10] and the references therein)
“simplicity” or “compressibility” of a function is understood as a possibility for
its accurate sparse representation in a certain (wavelet) basis.

A somewhat more general approach to the notion of a complexity of functions
has been suggested [47,48]: here we take as a complexity measure the rate of semi-
algebraic approximation. If the wavelet base is semi-algebraic, “compressible”
functions have low semi-algebraic complexity. The same is typically true for
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functions allowing for a fast approximation by various types of non-linear models.

2. Examples of moment inversion: one variable In this section we
consider some natural examples of the models Mp(x) in one dimension and of
their reconstruction from the moments. These are polynomials, rational func-
tions, linear combinations of δ-functions, and the class AD of piecewise-analytic
functions, each piece satisfying a fixed linear differential operator D with ratio-
nal coefficients. (Piecewise-polynomials belong to AD for D = dn

dxn ). Then we
consider piecewise-algebraic functions.

In this paper we use as one of the main tools in solving the moment inversion
problem, the moment generating function Ig(z) defined as

(2.1) Ig(z) =

∞
∑

k=0

mk(g)z
k =

∫ 1

0

g(t)dt

1− zt
.

2.1. Vetterli’s approach In [11, 27, 46] an important class of signals was intro-
duced, possessing a “finite rate of innovation”, i.e., a finite number of degrees of
freedom per unit of time. Usually such signals are not band-limited, so classical
sampling theory does not enable a perfect reconstruction of signals of this type.
It has been shown that using an adequate sampling kernel and a sampling rate
greater or equal to the rate of innovation, it is possible to reconstruct such sig-
nals uniquely [11, 27, 46]. The behavior of the reconstruction in the presence of
noise has also been investigated.

The main type of signals for which explicit reconstruction schemes have been
proposed include linear combinations of δ-functions and their derivatives, splines,
and piecewise polynomials. In spite of a somewhat different setting of the prob-
lem, the reconstruction schemes turn out to be mathematically similar to the
ones presented below. In fact, moments enter the reconstruction procedure as
an intermediate step in [11], and systems very similar to (2.6) and (2.7) below
explicitly appear in [11, 27, 46]. It is a remarkable fact (although traced at least
to [36]) that exactly the same systems arise in exponential approximation [17], in
reconstruction of plane polygons [13,18,29] (see Section 3.1 below), in reconstruc-
tion of quadrature domains [19] (see Section 3.2 below), in Padé approximations,
and in many other problems.

In [28] the approach of [11, 27, 46] is extended to some classes of parametric
non-bandlimited two-dimensional signals. This includes linear combinations of
2D δ-functions, lines, and polygons. Notice that the first problem in its com-
plex setting (where we consider as the allowed measurements only the complex
moments µk(f) =

∫∫

zkf(x, y) dxdy) leads once more to a complex system (2.6).

2.2. Polynomials Let P (x) be a polynomial of degree d, P (x) =
∑d

j=0 ajx
j .

For the k-th moment mk(P ) we have

(2.2) mk(P ) =

∫ 1

0

d
∑

j=0

ajx
j+k dx =

d
∑

j=0

aj

j + k + 1
=

d
∑

j=0

hkjaj ,
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if we put hkj = 1
j+k+1 . Now let a denote the column-vector of the coefficients

aj of the polynomial P (x) and let m denote the column-vector of the moments
m0(P ), . . . ,md(P ). We get the following linear system:

(2.3) Ha = m, H = (hkj).

Notice that the matrixH is a Hankel matrix: the rows of this matrix are obtained
by the shifts of its first row. More specifically, the matrix H belongs to the class
of Hilbert-type matrices [23]. In particular, its determinant is nonzero, and
system (2.2) has a unique solution. Therefore, we have the following.

Proposition 2.1. A polynomial P (x) of degree d can be uniquely recon-
structed from its first d+1 moments m0(P ), . . . ,md(P ), via solving system (2.3).

Notice, however, that the smallest eigenvalue λmin(H) behaves asymptotically
for d → ∞ as λmin(H) = K

√
dρ−4(d+1)(1 + o(1)), where K = 8π

√
2π21/4 and

ρ = 1 +
√
2, (see [23]). Therefore, the inversion of the matrix H becomes

problematic for large d.
Notice also that for each fixed polynomial P (x) expression (2.1) definesmk(P )

as a rational function of k.
As for the moment generating functions, we have the following.

Proposition 2.2. IP (z) = − 1
z log(1− 1

z ) + P̂ ( 1z ), with P̂ (s) a polynomial
of degree d− 1 in s.

Proof. We have P (t) = P̃ (t)(t− 1
z ) + P ( 1z ) where P̃ (t) is a polynomial of

degree d− 1 in t whose coefficients are polynomials of degree d− 1 in 1
z . Hence

IP (z) =

∫ 1

0

P (t)dt

1− zt
= −1

z

∫ 1

0

P ( 1z )dt

t− 1
z

−
∫ 1

0

P̃ (t) dt.

Integrating from 0 to 1 now provides the required expression. �

2.3. Rational functions Let R(x) be a rational function of degree d, R(x) =
P (x)
Q(x) , degQ = d, degP ≤ d− 1 (we assume that R does not have a “polynomial

part”). Thus

P (x) =

d−1
∑

j=0

ajx
j , Q(x) =

d
∑

j=0

bjx
j .

We have P (x) = Q(x)R(x) =
∑d

j=0 bjx
jR(x). Hence

mk(P ) =
d

∑

j=0

bjmk+j(R), k = 0, 1, . . . ,
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and using our notations from Section 2.1 above we finally get a system for the
unknowns aj , bj :

(2.4)
d−1
∑

j=0

hkjaj =
d

∑

j=0

mk+j(R)bj , k = 0, 1, . . . , 2d,

where, as above, hkj =
1

j+k+1 . We do not analyze here the solvability conditions

for (2.4) (cf. [24, Lemma 3.3]). Let us notice also that counting the sign changes
as in Section 2.6 below shows that a rational function R(x) of degree d can be
uniquely reconstructed from its first 4d moments m0(R), . . . ,m4d(R).

To compute the moment generating function IR(z), let us assume that the

roots α1, . . . , αd of Q are all distinct. Then R(t) =
∑d

i=1
Ai

t−αi
, and denoting 1

z
by w we get

R(t)

t− w
=

d
∑

i=1

Ai

(t− αi)(t− w)
=

d
∑

i=1

Ai

( 1

(αi − w)(t− αi)
− 1

(αi − w)(t− w)

)

.

Transforming integral (2.1) as in the proof of Proposition 2.2 and integrating,
we finally get the following.

Proposition 2.3. The moment generating function IR(z) of a rational
function R(x) is given by

IR(z) = −w
d

∑

i=1

Ai

αi − w

[

log
(1− αi

αi

)

− log
(w − 1

w

)]

, w =
1

z
.

2.4. Linear combination of δ-functions Let g(x) = Σn
i=1Aiδ(x − xi). For this

function we have

(2.5) mk(g) =

∫ 1

0

xkΣn
i=1Aiδ(x− xi) dx = Σn

i=1Aix
k
i .

So assuming that we know the moments mk(g) = αk, k = 0, 1, . . . , 2n − 1,
we obtain the following system of equations for the parameters Ai and xi, i =
1, . . . , n, of the function g:

(2.6) Σn
i=1Aix

k
i = αk, k = 0, 1, . . . , 2n− 1.

Notice that system (2.6) is linear with respect to the parameters Ai and non-
linear with respect to the parameters xi.

System (2.6) appears in many mathematical and applied problems. First of
all, if we want to approximate a given function f(x) by an exponential sum

f(x) ≈ C1e
a1x + C2e

a2x + · · ·+ Cne
anx,
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then the coefficients Ci and the values µi = eai satisfy a system of the form
(2.6) with the right-hand side (the “measurements”) being the values of f(x) at
the integer points x = 1, 2, . . . , (see [17, §4.9]). The method of solution of (2.6)
which we give below is usually called Prony’s method [36].

On the other hand, system (2.6), recurrence (2.7), and system (2.8) below
form one of the central objects in Padé approximation, (see, in particular, [32]
and the references therein).

System (2.6) appears also in error correction codes, in array processing (es-
timating the direction of signal arrival) and in other applications in signal pro-
cessing (see, for example, [11, 29] and the references therein).

In [13, 18, 29], system (2.6) appears in the reconstruction of plane polygons
from their complex moments. These results are shortly described in Section 3.2
below.

This system appears also in some perturbation problems in nonlinear model
estimation.

We now give a sketch of the proof of solvability of (2.6) and of the solution
method, which is, essentially, Prony’s method. We follow the lines of [29]. See
also the literature on Padé approximation, in particular, [32] and the references
therein

Theorem 2.4. A linear combination g(x) of n δ-functions can be uniquely
reconstructed from its first 2n − 1 moments m0(g), . . . ,m2n−1(g), via solving
system (2.6).

Representation (2.5) of the moments immediately implies the following result for
the moments generating function Ig(z).

Proposition 2.5. For g(x) = Σn
i=1Aiδ(x − xi), the moments generating

function Ig(z) is a rational function with the poles at xi and with the residues
Ai at these poles:

I(z) = Σn
i=1

Ai

1− zxi
.

We see that the function I(z) encodes the solution of system (2.6). So to solve
this system it remains to find explicitly the rational function I(z) from the first
2n of its Taylor coefficients α0, . . . , α2n−1. This is, essentially, the problem of
Padé approximation [32].

Now we use the fact that the Taylor coefficients of a rational function of degree
n satisfy a linear recurrence relation of the form

(2.7) mr+n = Σn−1
j=0Cjmr+j , r = 0, 1, . . . .

Since we know the first 2n Taylor coefficients α0, . . . , α2n−1, we can write a linear
system on the unknown recursion coefficients Cl:

(2.8) Σn−1
j=0Cjαj+r = αn+r, r = 0, 1, . . . , n− 1.
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Solving linear system (2.8) with respect to the recurrence coefficients Cj , we find
them explicitly. For a solvability of (2.8) see [17, 29, 32]. Now the recurrence
relation (2.8) with known coefficients Cl and known initial moments allows us to
easily reconstruct the generating function Ig(z) and hence to solve (2.6).

Remark. Another proof of Theorem 2.4 can be obtained in lines of the proof
of Theorem 2.9 below. Indeed, a difference of two linear combinations of n
δ-functions can have at most 2n − 1 “sign changes”. Then we apply Lemma
2.10.

2.5. Piecewise-solutions of linear ODE’s In this paper we do not consider sep-
arately the case of piecewise-polynomial functions. See [46] where a method
for reconstruction of piecewise-polynomial functions from samplings is suggested
(which starts with a reconstruction of linear combinations of δ-functions and of
their derivatives). Instead we consider, as a natural generalization of piecewise-
polynomial functions, the class AD of piecewise-analytic functions, each piece
satisfying a fixed linear differential operator D with rational coefficients. Such
functions are usually called “L-splines” (see [43, 44] and the references therein).

For piecewise-polynomial functions of degree d we have D = dd+1

dxd+1 . Notice that
Vetterli’s method [46] can be extended also to our class AD. However, in the
present paper we stress another approach to the moment reconstruction problem
for the class AD. It is presented in an accompanying paper in this issue [24],
while here we provide a necessary background.

Consider the equation

(2.9) Dy = y(k) + ak−1(x)y
(k−1) + · · ·+ a1(x)y

′ + a0(x)y = 0

with the coefficients ak−1(x), . . . , a0(x) real-analytic and regular on [0, 1]. All the
solutions of (2.9) on [0, 1] form a linear space LD with the basis y1(x), . . . , yk(x)

being the fundamental set of solutions of (2.9). For D = dk

dxk the space LD

consists of all the polynomials of degree at most k − 1, and we can take

{y1(x), . . . , yk(x)} = {1, x, x2, . . . , xk−1}.

Now we consider the class AD of all the piecewise-continuous functions g(x)
on [0, 1] with the jumps at x1, . . . , xn ∈ [0, 1], such that on each continuity
interval ∆i = [xi, xi+1] the function g(x) satisfies Dg = 0. We extend g(x) by
the identical zero outside the interval [0, 1].

We can represent g(x) on the intervals ∆i in a “polynomial form”: g(x) =
∑k

j=1 αijyj(x), where y1(x), . . . , yk(x) is the fundamental set of solutions of (2.9).
Alternatively, we can parametrize g(x) on the intervals ∆i by its initial data at
the point xi. We can further define “splines” of a prescribed smoothness in AD.
The constructions of [46] can be extended to this case.

While up to this point we could restrict our presentation to the real domain,
in what follows it will be necessary to extend the consideration to the complex
plane.
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First we recall shortly some classical facts related to the structure of linear
differential equations in the complex domain (see, for example, [35, 42] where
these facts are presented in a form convenient for our applications).

Consider the equation

(2.10) Dy = y(k) + ak−1(x)y
(k−1) + · · ·+ a1(x)y

′ + a0(x)y = 0

with the coefficients ak−1(x), . . . , a0(x) regular and univalued in the complex
domain Ω = C \ {x0, . . . , xm}. We do not specify at this stage the character of
possible singularities of aj(x) at the points x0, . . . , xm.

The following proposition (see, for example, [42]) characterizes multivalued
analytic functions which are solutions of a certain equation of the form (2.10).

Proposition 2.6. Any solution y(x) of (2.10) is a regular multivalued func-
tion in Ω, satisfying the following additional property (F): For any point w ∈ Ω
the linear subspace Lw spanned by all the branches of y(x) at w in the space
O(w) of all the analytic germs at w, has dimension at most k.

Any regular multivalued function v(x) in Ω with the property (F) satisfies a
certain equation of the form (2.10) of order at most k with all the coefficients
regular and univalued in the domain Ω.

Let us recall that for a given function g(x) on [0, 1], the moment generating
function Ig(z) =

∑

∞

k=0mk(g)z
k is given by the Cauchy-type integral

Ig(z) =

∫ 1

0

g(t)dt

1− zt
= w

∫ 1

0

g(t)dt

w − t
, w =

1

z
.

Now one of the basic classical facts about Cauchy-type integrals is that if g (on
each its continuity intervals) satisfies a certain equation of the form (2.10), then
Ig(z) satisfies another equation of this form. A proof (in a specific case which we
need in the present paper) can be found in [35,42]. In these papers also specific
ramification properties of Ig(z) are studied for g algebraic.

Now, in the accompanying paper in this issue [24], the functions g(x) from
the class AD are considered. A non-homogeneous equation of the form (2.10)
for Ig(z) is presented explicitly, and on this basis a reconstruction procedure is
suggested.

2.6. Piecewise-algebraic functions Exact reconstruction of piecewise-algebraic
(i.e., semi-algebraic) functions can be considered as one of the ultimate goals
of our approach. If we extend this class SA of semi-algebraic functions to
SA(ψ1, . . . , ψl), adding a finite number of fixed “models” ψ1, . . . , ψl and allowing
for all the elementary operations and for solving equations, we shall probably
cover all the examples of interest. In particular, such extensions include linear
combinations of shifts and dilations of ψ1, . . . , ψl, an important class appearing
in reconstruction of signals with finite innovation rate [11,27,46], and in wavelet
theory. Extensions of this sort are also closely related to what appears in the-
ory of o-minimal structures, see, for example, [12]. Because of the “finiteness
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results” in this theory we can hope that the “finite moments determinacy” of
semi-algebraic functions (Theorem 2.9 below) can be extended to at least some
important classes SA(ψ1, . . . , ψl).

Let us recall that g(x) is an algebraic function (as usual, restricted to [0, 1])
if y = g(x) satisfies an equation

(2.11) an(x)y
n + an−1(x)y

n−1 + · · ·+ a1(x)y + a0(x) = 0,

where an(x), . . . , a0(x) are polynomials in x of degreem. By definition, d = m+n
is the degree deg g of g.

We shall need the following simple properties of algebraic functions:

(i) The number of zeroes of an algebraic function g(x) defined by (2.11) does
not exceed m (and so it does not exceed deg g = m+ n).

(ii) A sum g(x) = g1(x)+ g2(x) of two algebraic functions of degrees d1 and d2
is an algebraic function, with deg g ≤ η(d1, d2).

We consider piecewise-algebraic functions on [0, 1]. Let such a function g(x)
be represented by the algebraic functions gq(x) of the degrees dq, respectively,
on the intervals ∆q = [xq, xq+1], q = 0, . . . , r, of the partition of [0, 1] by x0 =
0 < x1 < · · · < xr < xr+1 = 1. We define the combinatorial complexity, (or the
degree) σ(g) of g as follows:

Definition 2.7. The combinatorial complexity σ(g) is the sum
∑r

q=1 dq+r.
See [47,48].

The specific choice of this expression is motivated by the following simple
observation: the number of sign changes of a piecewise-algebraic function g on
[0, 1] does not exceed σ(g). This follows directly from property (i) above.

We also need the following lemma.

Lemma 2.8. Let g1, g2 be piecewise-algebraic functions with σ(gj) ≤ d, j =
1, 2. Then for g = g1 ± g2 the combinatorial complexity σ(g) satisfies σ(g) ≤
κ(d) = 2d(η(d, d) + 1), where η(d, d) is given by property (ii) above.

Proof. Observe that g has at most 2d jumps, and on each continuity interval
its degree is bounded by η(d, d). �

Now we can show that piecewise-algebraic functions are uniquely defined by
their few moments. At this stage, we do not touch the question of how such a
function can be actually reconstructed from the moments data, postponing this
problem till Section 2.6.1.

Theorem 2.9. A piecewise-algebraic function of a given combinatorial
complexity d is uniquely defined by its first κ(d) moments.

Proof. Assume, contrary to the statement of the theorem, that there are
functions g1 and g2 of complexity at most d, with exactly the same moments
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up to order s = κ(d). Hence for the difference g = g2 − g1 6= 0 we have the
vanishing of the moments up to s: mj(g) = 0, j = 0, 1, . . . , s. By Lemma 2.8 we
have for the combinatorial complexity of g the bound σ(g) ≤ s. Consequently,
the number of sign changes of g does not exceed s.

The next trick comes from classical moment theory.

Lemma 2.10. If the number of the sign changes and zeroes of g(x) 6= 0
do not exceed s, then some of its first s moments mj(g), j = 0, 1, . . . , s do not
vanish.

Proof. We can assume that g changes its sign at certain points t1, . . . , tl,
l ≤ s, and preserves the sign between these points. Let us construct a polyno-
mial Q(t) of degree l with exactly the same sign pattern as g: Q(t) = ±(x −
t1)(x − t2) · · · (x − tl). Write Q as Q(x) =

∑l
1 αjx

j . We have g(x)Q(x) > 0
everywhere, except t1, . . . , tl and possibly some other isolated points. Therefore
∫ 1

0
g(x)Q(x) > 0. On the other hand, this integral can be expressed as a linear

combination of the moments:
∫ 1

0
g(x)Q(x) =

∑l
1 αj

∫ 1

0
xjg(x)dx =

∑l
1 αjmj(g).

Hence some of the moments of g up to l ≤ s-th do not vanish. This proves
Lemma 2.10. �

To complete the proof of Theorem 2.9 it remains to notice that the difference
g = g2 − g1 is nonzero on at least one of its continuity intervals. �

2.6.1. Explicit moment inversion for algebraic functions As far as an explicit
inversion of the moment transform of algebraic functions is concerned, we are
not aware of any general approach to this problem. Piecewise-algebraic functions
belong to the class AD, as defined in Section 2.3 above. However, the problem
is that we do not know a priori the differential operator D which annihilates a
given algebraic function g. (The form of D is known, but not the coefficients of
the rational entries of D). This fact seems to prevent a direct application of the
method of [24] to piecewise-algebraic functions.

Let us analyze in more detail one special case. Assume that the algebraic
curve y = g(x) is a rational one. This means that it allows for a rational
parametrization x = P (t), y = Q(t). The moments mk(g) given by mk(g) =
∫ 1

0
xkg(x) dx, k = 0, 1, . . . , now can be expressed as

(2.12) mk(g) =

∫ b

a

P k(t)Q(t)p(t) dt,

where p denotes the derivative of P and 0 = P (a), 1 = P (b). Moments of this
form naturally appear in a relation with some classical problems in qualitative
theory of ODE’s (see [2, 4, 5, 7, 33–35]).

Our problem can be reformulated now as the problem of explicitly finding P
and Q from knowing a certain number of the moments mk in (2.12).
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Of course, in general we cannot expect this system of nonlinear equations to
have a unique solution. Indeed, while the function y = g(x) is determined by
its moments in a unique way, the rational parametrization P,Q of this curve in
general is not unique. In particular, let W (t) be a rational function satisfying
W (0) = 0, W (1) = 1. Substituting W (t) into P and Q we get another rational
parametrization of our curve:

(2.13) x = P̂ (t), y = Q̂(t), with P̂ (t) = P (W (t)), Q̂(t) = Q(W (t)).

Consequently, we can ask the following question: are all the solutions of (2.12)
related one to another via a composition transform (2.13)?

If the answer to this question is positive, we can restrict our parametrizations
P,Q to be “mutually prime in composition sense” (see [41]) and thus to obtain
uniqueness of the reconstruction.

More generally, the “inversion problem” for system (2.12) is to characterize
all the solutions of system (2.12) and to provide an effective way to find these
solutions.

A special case of the inversion problem, in which definite results have been
recently obtained, is the “moment vanishing problem”, i.e., to characterize all
the pairs P,Q for which the moments mk defined by (2.12) vanish.

The moment vanishing problem plays a central role in study of the center
conditions for the Abel differential equation (see [2, 5, 7, 33–35]). In fact, it
provides an infinitesimal version of the Poincaré center-focus problem for the
Abel equation. In spite of a very classical setting (we ask for conditions of
orthogonality of pQ to all the powers of P !) this problem has been solved (for
P and Q polynomials) only very recently [31]. Let us describe the solution.

We say that P and Q satisfy a “composition condition” if there are polyno-
mials P̃ (w) and Q̃(w), and a polynomial W (x), satisfying W (0) = W (1), such
that

(2.14) P (x) = P̃ (W (x)), Q(x) = Q̃(W (x)).

Composition condition (2.14) can be easily shown to imply the vanishing of all
the moments (2.12). In many cases it is also a necessary one, but not always.
The examples of P,Q annihilating the moments (2.12) but not satisfying (2.14)
can be obtained as follows (see [33]): if P has two right composition factors
W1(x) and W2(x), then P and Q =W1+W2 will annihilate the moments (2.12)
because of a linearity with respect to Q. For some P we can find W1 and W2

which are mutually prime in composition algebra (see [41]). Then typically P
and Q = W1 + W2 will have no common right composition factors [33]. The
result of [31] claims that this is essentially the only possibility.

Theorem 2.11 ([31]). All the moments (2.12) vanish if and only if Q is a
sum of Qj , j = 1, . . . , l, such that for each j the polynomials P and Qj satisfy
composition condition (2.14).
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One can expect that the methods developed in [2, 5, 7, 31, 33–35] can help in
further analyzing the reconstruction problem for semi-algebraic functions in one
and more variables. See, in particular, Section 3 below.

3. Functions of two variables Also in two dimensions exact reconstruc-
tion of semi-algebraic functions (and of their extension to SA(ψ1, . . . , ψl)) can
be considered as one of the ultimate goals of our approach.

3.1. Reconstruction of polygons from complex moments In [13,18,29] the prob-
lem of reconstruction of a planar polygon from its complex moments is consid-
ered. The complex moments of a function f(x, y) are defined as

µk(f) =

∫∫

zkf(x, y) dxdy, k = 0, 1, . . . , z = x+ iy.

Complex moments can be expressed as certain specific linear combinations of
the real double moments mkl(f).

For a plane subset A, its complex moments µk(A) are defined by µk(A) =
µk(χA), where χA is the characteristic function of A.

Let P be a closed n-sided planar polygon with the vertices zi, i = 1, . . . , n.
The reconstruction method of [29] is based on the following result of [8].

Theorem 3.1. There exists a set of n coefficients ai, i = 1, . . . , n, depend-
ing only on the vertices zi, such that for any analytic function φ(z) on P we
have

∫∫

P

φ′′(z) dxdy =

n
∑

i=1

aiφ(zi).

The coefficients aj, j = 1, . . . , n are given as

aj =
1

2
(
z̄j−1 − z̄j

zj−1 − zj
− z̄j − z̄j+1

zj − zj+1
)

.

Applying this formula to φ(z) = zk we get

(3.1) k(k − 1)µk−2(χP ) =

n
∑

i=1

aiz
k
i , k = 0, 1, . . . ,

where we put µ−2 = µ−1 = 0. So on the left-hand side we have shifted moments
of P .

If we ignore the fact that aj can be expressed through zi and consider both
aj and zi as unknowns, we get from (3.1) a system of equations

(3.2)

n
∑

i=1

aiz
k
i = νk, k = 0, 1, . . . ,
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where νk denotes the “measurement” k(k − 1)µk−2(P ). System (3.2) is identi-
cal to system (2.6) which appears in the reconstruction of linear combination of
δ-functions. One of the solution methods suggested in [29] is the Prony method
described in Section 2.4 above. Another approach is based on matrix pencils. In
[13, 18] an important question was investigated concerning polygon reconstruc-
tion from noisy data.

3.2. Quadrature domains We introduce, following [19], a slightly different se-
quence of double moments: for a function g(z) = g(x+ iy) the moments m̃kl(g)
are defined by

m̃kl(g) =

∫∫

zkz̄lg(z) dxdy, k, l ∈ N.

One defines the moment generating function Ig(v, w) =
∑

∞

k,l=0 m̃kl(g)v
kwl and

the “exponential transform”

Ĩg(v, w) = 1− exp
(

− 1

π
Ig(v, w)

)

= exp
(

− 1

π

∫∫

Ω

g(z)dxdy

(z − v)(z̄ − w)

)

:=
∞
∑

k,l=0

bkl(g)v
kwl.

Now (classical) quadrature domains in C are defined as follows.

Definition 3.2. A quadrature domain Ω ⊂ C is a bounded domain with
the property that there exist points z1, . . . , zm ∈ Ω and coefficients cij , i =
1, . . . ,m, j = 0, . . . , si − 1, so that for all analytic integrable functions f(z) in Ω
we have

(3.3)

∫∫

Ω

f(x+ iy) dxdy =

m
∑

i=1

si−1
∑

j=0

cijf
(j)(zi).

N = s1 + · · ·+ sm is called the order of the quadrature domain Ω.

The simplest example is provided by the disk DR(0) of radius R centered at
0 ∈ C:

∫∫

DR(0)
f(x + iy) dxdy = πR2f(0). The results of Davis ([8]; Theorem

3.1 above) give another example in this spirit.
The following result ([19,20], Theorem 3.1) provides a necessary and sufficient

condition for Ω ⊂ C to be a quadrature domain: let ĨΩ(v, w) = ĨχΩ
(v, w) be the

exponential transform of Ω.

Theorem 3.3. Ω is a quadrature domain if and only if there exists a poly-
nomial p(z) with the property that the function q̃(z, w̄) = p(z)p̄(w)ĨΩ(z, w̄) is
a polynomial at infinity (denoted by q(z, w̄)). In that case, by choosing p(z) of
minimal degree, the domain Ω is given by Ω = {z ∈ C, q(z, z̄) < 0}. Moreover,
the polynomial p(z) in this case is given by p(z) =

∏m
i=1(z − zi)

si , where zi are
the quadrature nodes of Ω.
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Now, the algorithm in [19] for reconstruction of a quadrature domain from its
moments consists of the following steps:

(i) Given the moments m̃kl(Ω) = m̃kl(χΩ) up to a certain order, construct the
(truncated) exponential transform Ĩ(v, w) =

∑

∞

k,l=0 bklv
kwl.

(ii) Identify the minimal integer N such that det(bk,l)
N
k,l=0 = 0. Then there

are coefficients αj , j = 0, . . . , N − 1, such that for B = (bk,l)
N
k,l=0 and

α = (α1, . . . , αN−1, 1)
T we have

(3.4) Bα = 0.

We solve this system with respect to α. Then the polynomial p(z) defined
above is given by p(z) = zN + αN−1z

N−1 + · · ·+ α0.

(iii) Construct the function

RΩ(z, w̄) = p(z)p̄(w) exp
(

− 1

π

N−1
∑

k,l=0

m̃kl(Ω)
1

zk+1

1

w̄l+1

)

and identify q(z, w̄) as the part of RΩ(z, w̄) which does not contain negative
powers of z and w̄. Then the domain Ω is given by

Ω = {z ∈ C, q(z, z̄) < 0}.

Remark. Let us substitute into the definition of the quadrature domain (for-
mula (3.3) above) f(z) = zk. Assuming that all the quadrature nodes zi are
simple, we get for the complex moments m̃k,0(Ω) = mk(Ω) the expression

mk(Ω) =

m
∑

i=1

ciz
k
i ,

which is identical to (3.2) in reconstruction of planar polygons. So we can recon-
struct the quadrature nodes zi and the coefficients ci from the complex moments
only, and we get once more a complex system which is identical to (2.6). Allow-
ing quadrature nodes zi of an arbitrary order, we get a system corresponding to
a linear combination of δ-functions and their derivatives (cf. [28, 46]).

Notice that system (3.4) that appears in step (ii) of the reconstruction algo-
rithm above is very similar to system (2.8) in the solution process of (2.6).

3.3. δ-functions along algebraic curves As we have mentioned above, a nat-
ural class of functions f(x, y) of two variables, for which we can hope for
an explicit reconstruction from a finite number of the moments mkl(f) =
∫∫

xkylf(x, y) dxdy, k, l = 0, 1, . . . , consists of semi-algebraic functions.
Those are piecewise-algebraic functions with the continuity pieces bounded
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by piecewise-algebraic curves. Among semi-algebraic functions are piecewise-
polynomial functions with the continuity pieces bounded by spline curves, a
very natural and convenient object in constructive approximation.

Most of the methods presented in Section 2 for functions of one variable
are applicable also in the case of two variables. In particular, generalizing the
approach of [46] we can differentiate piecewise-polynomial functions a sufficient
number of times and finally get a combination of weighted δ functions along the
partition curves. See also [28].

In this paper we restrict ourselves to a discussion of only one example. Assume
that f(x, y) is a δ-function δS along a rational curve S, i.e., for any ψ(x, y) we
have

∫∫

fψ dxdy =
∫

S
ψ(x, y) dx. Let

x = P (t), y = Q(t), t ∈ [0, 1]

be a rational parametrization of S. The moments now can be expressed as

mkl(f) =

∫ 1

0

P k(t)Ql(t)p(t) dt,

where p denotes the derivative P ′ of P . This system is an extension of system
(2.12): here we are allowed to use all the double moments, while in (2.12) only
the moments mk1 are available.

Also here we notice that a rational parametrization P,Q of the curve S in
general is not unique: for any rational function W (t) satisfying W (0) = 0,
W (1) = 1 we get another rational parametrization of our curve:

(3.5) x = P̂ (t), y = Q̂(t), with P̂ (t) = P (W (t)), Q̂(t) = Q(W (t)).

Consequently, we can reiterate the question in Section 2.6 with better chances
for a positive answer: are all the solutions of (3.5) related one to another via a
composition transform (2.13)?

For the “Moment vanishing problem” for (3.5) a definite answer has been
obtained in [35]: composition condition (2.14) is necessary and sufficient for the
moments vanishing.

Let us now assume that the curve S is closed and that it can be parame-
trized by x = P (t), y = Q(t), with t in the unit circle S1. The study of the
double moments of this form brings us naturally to the recent work of G. Henkin
[9, 21, 22]. Indeed, the vanishing condition for the moments mkl(f) is given by
Wermer’s theorem [1]: mkl(f) ≡ 0 if and only if S bounds a complex 2-chain
in C

2. See [2] for a simple interpretation of Wermer’s condition in the case of
rational P,Q. In general, if the moments mkl(f) do not vanish identically, then
the local germ of the complex analytic curve Ŝ generated by S in C

2 does not
“close up” inside C

2. Henkin’s work [9, 21, 22], in particular, analyzes various
possibilities of this sort in terms of the “moments generating function”. We
expect that a proper interpretation of the results of [9, 21, 22] can help also in
understanding of the moment inversion problem.
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