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Abstract. We obtain fixed and common point theorems generalizing
fixed point theorems of W. A. Kirk and T. Suzuki for Banach and Meir–
Keeler type asymptotic contractions.

Résumé. Nous démontrons des théorèmes de points fixes et de points
communs qui généralisent des théorèmes de points fixes du type de Banach
et de Meir–Keeler pour les contractions asymptotiques.

1. Introduction. The classical Banach contraction theorem is one of the
most useful results in fixed point theory. In recent years, a number of general-
izations and applications of Banach’s theorem have appeared. In 1969, Meir–
Keeler [8] obtained the following generalization.

Theorem 1.1. Let (X, d) be a complete metric space and T a self-map on

X. Assume that for every ε > 0, there exists δ > 0 such that

ε ≤ d(x, y) < ε + δ ⇒ d(Tx, Ty) < ε

for all x, y ∈ X. Then T has a unique fixed point.

Cho et al. [2], Lim [7], Park and Rhoades [9], Jachymski [3], and others ob-
tained various generalizations of the above theorem. Kirk [6] introduced the
following notion of asymptotic contraction on a metric space, and proved a fixed
point theorem for such contractions.

Definition 1.1 (Kirk [6]). Let (X, d) be a metric space and T a self-map on
X. T is an asymptotic contraction on X if there exists a continuous function ϕ
from [0,∞) into itself and a sequence {ϕn} of functions from [0,∞) into itself
such that

(K1) ϕ(0) = 0;
(K2) ϕ(r) ≤ r for r ∈ (0,∞);
(K3) {ϕn} converges to ϕ uniformly on the range of d; and
(K4) for x, y ∈ X and n ∈ N, d(Tnx, Tny) ≤ ϕn

(

d(x, y)
)

.
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Kirk [6] obtained the following theorem.

Theorem 1.2. Let (X, d) be a complete metric space and T a continuous

asymptotic contraction on X with {ϕn} and ϕ as in Definition 1.1. Assume

that there exists x ∈ X such that the orbit {Tnx : n ∈ N} of x is bounded, and

that ϕn is continuous for n ∈ N. Then there exists a unique fixed point z ∈ X.

Moreover limn Tnx = z for all x ∈ X.

Jachymski and Jòz̀wic [4] showed that the continuity of T is essential in The-
orem 1.2 [4, Ex. 1]. Recently Suzuki [11] introduced the following notion of an
asymptotic contraction of Meir–Keeler type generalizing the Meir–Keeler con-
traction and Kirk’s asymptotic contraction (cf. Definition 1.1).

Definition 1.2. Let (X, d) be a metric space. Then a map T on X is an
asymptotic contraction of Meir–Keeler type (ACMK for short) if there exists a
sequence ϕn of functions from [0,∞) into itself satisfying the following:

(S1) lim sup ϕn(ε) ≤ ε) for all ε ≥ 0;
(S2) for each ε > 0, there exists δ > 0 and ν ∈ N such that ϕν(t) ≤ ε for all

t ∈ [ε, ε + δ];
(S3) d(Tnx, Tny) < ϕn

(

d(x, y)
)

for all n ∈ N and x, y ∈ X with x 6= y.

Inspired by Jachymski and Jòz̀wic [4, Lemma 4], Suzuki [11] obtained the
following result.

Theorem 1.3. Let (X, d) be a complete metric space and T an ACMK

on X. Assume that T l is continuous for some l ∈ N. Then there exists a unique

fixed point z ∈ X. Moreover, limn Tnx = z for all x ∈ X.

Following largely Suzuki [11], we present an extension of the above theorem.
Further, with a view to increasing the scope of Theorem 1.3, we introduce a
dummy map f in (S3) and obtain a common fixed point theorem for a pair of
maps commuting just at a coincidence point of T and f .

2. Main results.

Theorem 2.1. Let (X, d) be a complete metric space and T a map satisfying

the following conditions:

(A1) lim supn ϕn(ε) ≤ ε for all ε ≥ 0;
(A2) for each ε > 0 there exists δ > 0 and µ ∈ N such that ϕµ(t) ≤ ε for all

t ∈ [ε, ε + δ];
(A3) d(Tnx, Tny) < ϕn

(

M(x, y)
)

for all n ∈ N and x, y ∈ X with x 6= y, where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

If T k is continuous for some k ∈ N then T has a unique fixed point z ∈ X.

Moreover, limn Tnx = z for all x ∈ X.
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Proof. Pick x0 in X. Define a sequence {xn} by xn = Tnx0, n = 1, 2, . . . .
First we show that

(2.1) lim
n→∞

d(Tnx0, T
nx1) = 0 for all x0, x1 ∈ X.

It initially holds if x0 = x1. In the other case of x0 6= x1, we assume that
α := lim supn d(Tnx0, T

nx1) > 0. From the condition (A2), we can choose
µ1 ∈ N satisfying ϕµ1

(

d(x0, x1)
)

≤ d(x0, x1). By (A3) and (A1),

(2.2) d(Tµ1x0, T
µ1x1) < ϕµ1

(

M(x0, x1)
)

≤ M(x0, x1).

Then proceeding as in Suzuki [11],

α := lim sup
n

d(TnoTµ1x0, T
noTµ1x1)

≤ lim sup
n

ϕn

(

M(Tµ1x0, T
µ1x1)

)

≤ M(Tµ1x0, T
µ1x1)

= max{d(Tµ1x0, T
µ1x1), d(Tµ1x0, T

µ1+1x0), d(Tµ1x1, T
µ1+1x1)}

= max{d(Tµ1x0, T
µ1x1), d(Tµ1x0, T

µ1x1), d(Tµ1x1, T
µ1x2)}

(2.3)

Notice that

d(Tµ1x1, T
µ1x2)

= d(TTµ1x0, TTµ1x1) < ϕ1

(

M(Tµ1x0, T
µ1x1)

)

≤ M(Tµ1x0, T
µ1x1)

= max{d(Tµ1x0, T
µ1x1), d(Tµ1x0, T

µ1x1), d(Tµ1x1, T
µ1x2)}

= d(Tµ1x1, T
µ1x2),

a contradiction. Therefore (2.3) yields M(Tµ1x0, T
µ1x1) = d(Tµ1x0, T

µ1x1).
From (2.2),

d(Tµ1x0, T
µ1x1) < ϕµ1

(

M(x0, x1)
)

≤
(

M(x0, x1)
)

= max{d(x0, x1), d(x0, Tx0), d(x1, Tx1)}

= max{d(x0, x1), d(x0, x1), d(x1, x2)} = d(x0, x1).

So, α < d(x0, x1). Using (2.3) and (A1) and proceeding as above, we have

d(Tµ1+kx0, T
µ1+kx1) < ϕµ1

(

M(T kx0, T
kx1)

)

≤ M(T kx0, T
kx1),

and

α := lim sup
n

d(TnoTµ1+kx0, T
noTµ1+kx1)

≤ lim sup
n

ϕµ1

(

M(Tµ1+kx0, T
µ1+kx1)

)

< M(T kx0, T
kx1)

= max{d(T kx0, T
kx1), d(T kx0, T

k+1x0), d(T kx1, T
k+1x1)}

= max{d(T kx0, T
kx1), d(T kx1, T

kx2)} = d(T kx0, T
kx1).
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Thus we obtain α < d(T kx0, T
kx1) for all k ∈ N ∪ {0}. Hence {d(Tnx0, T

nx1)}
converges to α.

Since 0 < α < d(x0, x1) < ∞, there exists δ2 > 0 and µ2 ∈ N such that

ϕµ2
(t) ≤ α for all t ∈ [α, α + δ2].

We choose µ3 ∈ N with d(Tµ3x0, T
µ3x1) < α + δ2. Then we have

d(Tµ2oTµ3x0, T
µ2oTµ3x1) < ϕµ2

(

M(Tµ3x0, T
µ3x1)

)

≤ α,

which is a contradiction. This proves (2.1).
Let u ∈ X and define a sequence {un} in X by un = Tnu, n ∈ N. From (2.1),

limn(un, un+1) = 0. Now we show that

(2.4) lim
n→∞

sup
m>n

d(un, um) = 0.

Let ε > 0 be fixed. Then there exists δ ∈ (0, ǫ) and µ4 ∈ N such that ϕµ4
(t) ≤ ε

for all t ∈ [ε, ε+δ4]. For such δ4 there exists µ5 ∈ N such that d(un, un+1) < δ/µ4

for every n ≥ µ5. We assume that there exist k,m ∈ N with m > k ≥ µ5 and
d(ul, um) > 2ǫ. Then we put l = min{j ∈ N : k < j, ε + δ4 ≤ d(ul, uj)}. Since

2δ4 < ε + δ4 ≤ d(uk, ul) ≤

l−1
∑

j=k

d(uj , uj+1 ≤

l−1
∑

j=k

δ4

µ4

= (l − k)
δ4

µ4

,

we have 2µ4 < l − k. Hence k < l − µ4. Now

d(uk, ul−µ4
) ≥ d(uk, ul) − d(ul−µ4

, ul)

≥ d(uk, ul) −

µ4−1
∑

j=0

d(ul−j−1, ul−j) ≥ ε + δ4 − µ4

δ4

µ4

= ε.

Since ε ≤ d(uk, ul−µ4
) < ε + δ,

d(uk+µ4
, ul) = d(Tµ4uk, Tµ4ul−µ4

) < ϕ
(

M(uk, ul−µ4
)
)

≤ ε.

Therefore

d(uk, ul) ≤

µ4
∑

j=1

d(uk+j−1, uk+j) + d(uk+µ4
, ul) < µ4

δ4

µ4

+ ε = δ4 + ε.

This contradicts the definition of l. Therefore m > n ≥ µ5 implies d(un, um) ≤
2ε, and (2.4) holds. So {un} is Cauchy sequence.

Since X is complete, there exists z ∈ X such that {un} converges to z. Now
from the continuity of T k,

z = lim
n→∞

T k+nz = lim
n→∞

T koTnz = T k( lim
n→∞

Tnz) = T kz.
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Thus z is a fixed point of T k. Recall that (2.1) is true for any arbitrary point
x0 ∈ X. So, by (2.1), we have

lim
n→∞

d(Tnk+1x0, T z) = lim
n→∞

d(Tnk+1x0, T
nk+1z) = lim

n→∞

d(Tnx0, T
nz) = 0.

This yields Tz = z. If w is another fixed point of T then by (2.1),

d(z, w) = lim
n→∞

d(Tnw, Tnz) = 0,

and z = w. This completes the proof.
We remark that the contracting condition (S3) of Suzuki’s Theorem 1.3 is

included in the condition (A3) of Theorem 2.1. So Theorem 2.1 is a generalization
of Theorem 1.3.

Now we extend the scope of Theorem 1.3 by introducing a new map f in
Theorem 1.3. The idea of the following theorem comes essentially from Jungck [5]
and Singh and Pant [10].

Theorem 2.2. Let Y be an arbitrary set, (X, d) a metric space. Let and

T, f : Y → X such that T (Y ) ⊆ f(Y ) and

(B1) lim supn ϕn(ε) ≤ ε for all ε ≥ 0;
(B2) for each ε > 0 there exists δ > 0 and µ ∈ N such that ϕµ(t) < ε for all

t ∈ [ε, ε + δ];
(B3) d(Tnx, Tny) < ϕn

(

d(fx, fy)
)

for all n ∈ N and x, y ∈ X with x 6= y.

If T (Y ) or f(Y ) is a complete subspace of X then T and f have a coincidence.

Further, if Y = X, then T and f have a unique common fixed point provided

that T and f commute just at a point.

Proof. Pick x0 ∈ Y . Define a sequence {yn} by yn = Txn = fxn+1,
n = 0, 1, 2, . . . . We can do so since the range of f contains the range of T . First
we show that

lim
n→∞

d(Txn, Txn+1) = lim
n→∞

d(yn, yn+1) = 0.

Assume that α := lim supn d(Txn, Txn+1) > 0. From the condition (B2), we can
choose µ1 ∈ N satisfying ϕµ1

(

d(x0, x1)
)

≤ d(x0, x1). By (B3) and (B2),

(2.5) d(Txµ1
, Txµ1+1) < ϕµ1

(

d(fx0, fx1)
)

≤ d(fx0, fx1).

Then, proceeding as in the proof of Theorem 2.1,

α := lim
n→∞

sup d(Txµ1+n, Txµ1+n+1)

≤ lim
n→∞

supϕn

(

d(Txµ1
, Txµ1+1)

)

≤ d(Txµ1
, Txµ1+1) < ϕµ1

d(fx0, fx1) ≤ d(fx0, fx1).
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Using (2.5) and (B2) and proceeding as before, we have d(Txµ1+k, Txµ1+k+1) <
ϕµ1

(d(Txk, Txk+1) ≤ d(fxk, fxk+1), and

α := lim
n→∞

sup d(Txµ1+n+k, Txµ1+n+k+1)

≤ lim
n→∞

supϕn

(

d(Txµ1+k, Txµ1+k+1)
)

≤ d(Txµ1
, Txµ1+1) < ϕµ1

d(fxk, fxk+1)

≤ d(fxk, fxk+1) = d(Txk−1, Txk).

Thus we obtain α < d(Txk−1, Txk) for all k ∈ N ∪ {0}. Hence {d(Txn, Txn+1)}
converges to α.

Since 0 < α < d(fx0, fx1) < ∞, there exists δ2 > 0 and µ2 ∈ N such that

ϕµ2
(t) ≤ α for all t ∈ [α, α + δ2].

We choose µ3 ∈ N with d(Txµ3
, Txµ3+1) < α + δ2. Then we have

d(Txµ2+µ3
, Txµ2+µ3+1) < ϕµ2

d(Txµ3
, Txµ3+1) ≤ α,

a contradiction. This proves that limn→∞ d(yn, yn+1) = 0.
Now we show that {yn} is a Cauchy sequence. Suppose {yn} is not Cauchy.

Then there exists β > 0 and increasing sequences {mk} and {nk} of positive
integers such that for all n ≤ mk < nk,

d(ymk
, ynk

) ≥ β and d(ymk
, ynk−1) < β.

By the triangle inequality,

d(ymk
, ynk

) ≤ d(ymk
, ynk−1) + d(ynk−1, ynk

).

Making k → ∞, d(ymk
, ynk

) < β. Thus d(ymk
, ynk

) → β as k → ∞. By (B2),

d(ymk+n, ynk+n) = d(Txmk+n, Txnk+n)

< ϕn

(

d(fxmk
, fxnk

)
)

= ϕn

(

d(ymk−1, ynk−1)
)

.

Making k → ∞, β ≤ ϕn(β) < β, a contradiction and the sequence {yn} is
Cauchy.

Suppose f(Y ) is complete. Then {yn} being contained in f(Y ) has a limit in
f(Y ). Call it z. Let u ∈ f−1z. Then fu = z. Using (B2),

d(Tu, Txn) ≤ ϕ
(

d(fu, fxn)
)

.

Making n → ∞, d(Tu, z) ≤ ϕ(0) < 0. Therefore Tu = z = fu.
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If Y = X and the pair (T, f) commutes at u then Tfu = fTu and TTu =
Tfu = fTu = ffu. In view of (B2), it follows that

d(Tu, TTu) < ϕ
(

d(fu, Tu)
)

= ϕ(0) < 0.

So TTu = Tu and fTu = TTu = Tu = z.
In case T (Y ) is a complete subspace of X, then the sequence {yn} converges

in f(Y ) since T (Y ) ⊆ f(Y ). So the previous proof works. The unicity of the
common fixed point follows easily.

The following examples show the superiority of Theorem 2.2 over Theo-
rems 1.2 and 1.3.

Example 1. Let X = [1,∞) with the usual metric d. Let T : X → X such
that Tx = x and ϕn(t) = 9t

10
for all nonnegative t (or any other choice of ϕn

with ϕn(t) < t).
It can be easily seen that Theorems 1.2 and 1.3 are not applicable to this

map T . If we take fx = x2 for all x ∈ X then T and f satisfy all the hypotheses
of Theorem 2.2, and T1 = f1 = 1.

Example 2. Let X = [0,∞) with the usual metric d. Let T : X → X be
such that

Tx =

{

x if x is rational,

0 if x is irrational.

Notice that d(Tnx, Tny) = |x − y| and ϕn

(

d(x, y)
)

= ϕn(|x − y|) < |x − y|
for distinct x, y. So (S3) of Theorem 1.3 can not be satisfied. However, if we
take f : X → X such that fx = 2x then T and f satisfy all the hypotheses of
Theorem 2.2, and T0 = f0 = 0.
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