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ABSTRACT. We obtain fixed and common point theorems generalizing
fixed point theorems of W. A. Kirk and T. Suzuki for Banach and Meir—
Keeler type asymptotic contractions.

RESUME. Nous démontrons des théorémes de points fixes et de points
communs qui généralisent des théorémes de points fixes du type de Banach
et de Meir—Keeler pour les contractions asymptotiques.

1. Imtroduction. The classical Banach contraction theorem is one of the
most useful results in fixed point theory. In recent years, a number of general-
izations and applications of Banach’s theorem have appeared. In 1969, Meir—
Keeler [8] obtained the following generalization.

THEOREM 1.1.  Let (X,d) be a complete metric space and T a self-map on
X. Assume that for every e > 0, there exists § > 0 such that

e<d(z,y)<e+d=d(Tx,Ty) <¢

forallxz, y € X. Then T has a unique fized point.

Cho et al. [2], Lim [7], Park and Rhoades [9], Jachymski [3], and others ob-
tained various generalizations of the above theorem. Kirk [6] introduced the
following notion of asymptotic contraction on a metric space, and proved a fixed
point theorem for such contractions.

DErFINITION 1.1 (Kirk [6]). Let (X, d) be a metric space and T a self-map on
X. T is an asymptotic contraction on X if there exists a continuous function ¢
from [0, 00) into itself and a sequence {¢,} of functions from [0, 00) into itself
such that
(K1) ¢(0) = 0;

(K2) o(r) <r for r € (0, 00);
(K3) {¢n} converges to ¢ uniformly on the range of d; and
(K4) for z,y € X and n € N, d(T"z,T"y) < ¢n(d(z,y)).
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Kirk [6] obtained the following theorem.

THEOREM 1.2.  Let (X,d) be a complete metric space and T a continuous
asymptotic contraction on X with {¢,} and ¢ as in Definition 1.1. Assume
that there exists x € X such that the orbit {T™x : n € N} of x is bounded, and
that v, is continuous for n € N. Then there exists a unique fixed point z € X.
Moreover lim, T"x = z for all x € X.

Jachymski and Jozwic [4] showed that the continuity of T' is essential in The-
orem 1.2 [4, Ex. 1]. Recently Suzuki [11] introduced the following notion of an
asymptotic contraction of Meir—Keeler type generalizing the Meir—Keeler con-
traction and Kirk’s asymptotic contraction (cf. Definition 1.1).

DEFINITION 1.2. Let (X,d) be a metric space. Then a map T on X is an
asymptotic contraction of Meir—Keeler type (ACMK for short) if there exists a
sequence ,, of functions from [0, 00) into itself satisfying the following:

(S1) limsup ,(e) < ¢) for all € > 0;

(S2) for each € > 0, there exists § > 0 and v € N such that ¢, (t) < e for all
t€le, e+

(S3) d(T"z,T"y) < ¢n(d(z,y)) for all n € N and z,y € X with = # y.

Inspired by Jachymski and Jozwic [4, Lemma 4], Suzuki [11] obtained the
following result.

THEOREM 1.3.  Let (X,d) be a complete metric space and T an ACMK
on X. Assume that T" is continuous for some | € N. Then there exists a unique
fizxed point z € X. Moreover, lim, T"x = z for all x € X.

Following largely Suzuki [11], we present an extension of the above theorem.
Further, with a view to increasing the scope of Theorem 1.3, we introduce a
dummy map f in (S3) and obtain a common fixed point theorem for a pair of
maps commuting just at a coincidence point of T and f.

2. Main results.

THEOREM 2.1.  Let (X, d) be a complete metric space and T a map satisfying
the following conditions:

(A1) limsup,, ¢n(e) <€ foralle > 0;
(A2) for each € > 0 there exists § > 0 and p € N such that ¢, (t) < e for all
t€le,e+dl;
(A3) d(T"z,T"y) < on(M(z,y)) for alln € N and z,y € X with x # y, where
M(z,y) = max{d(z,y),d(z, Tz),d(y, Ty)}.
If T* is continuous for some k € N then T has a unique fized point z € X.
Moreover, lim,, T"x = z for all x € X.
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PROOF. Pick g in X. Define a sequence {z,,} by x, = T"zo, n =1,2,....
First we show that

(2.1) lim d(T"xg,T"x1) =0 for all zg,2; € X.

n—oo

It initially holds if g = x1. In the other case of zg # x1, we assume that
« = limsup,, d(T™xy,T"x1) > 0. From the condition (A2), we can choose
1 € N satisfying ¢, (d(zo,21)) < d(zo,z1). By (A3) and (A1),

(2.2) d(TH o, T x1) < py (M (w0, 21)) < M(z0,71).
Then proceeding as in Suzuki [11],
(2.3) a :=limsupd(T"oT" xo, T"0TH x1)

< Tdimsup gy, (M (TH xo, TH a1)) < M(TH 2o, TH 1)

= max{d(T" zo, T" x1), d(T"* xo, T** T ag), d(T* 2, T Tay)}
= max{d(T" xg, T" 1), d(T*" 2o, T* x1),d(TH" x1, T" x2)}
Notice that
d(TM xy, TH z9)
=d(TTHMxg, TTM 1) < 1 (M(T’“ajo,T“lxl)) < M(THag, TH 2q)
= max{d(T" zo, T" 1), d(T"* xo, TH 1), d(TH 21, TH 29)}
=d(TMx, TH xy),

a contradiction. Therefore (2.3) yields M(T*1xo, THxy) = d(TH" xg, T* 7).
From (2.2),

d(T* zg, TH 21) < @p, (M(xmml)) < (M(xg,;vl))
= max{d(zg, z1),d(x0, Txg),d(x1,T21)}
= max{d(zo, z1),d(x0, z1),d(x1,22)} = d(x0,21).
So, a < d(xg,x1). Using (2.3) and (A1) and proceeding as above, we have
d(TH* o, T Fay) < g (M(T 20, T 21)) < M(T 20, T"24),

and

« := lim sup d(jmo:]wﬁk%o7 TnOT,u1+ka:1)
< limsup @, (M (T* Fzg, TH R 21)) < M(T* 20, TF21)

= max{d(T"xo, T"x1), d(T*xo, T" o), d(T* 2y, T*121)}
= max{d(T"zo, T"x),d(T*x1, T"x2)} = d(T*xo, TF2,).
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Thus we obtain o < d(T*zg, T*x1) for all k € NU {0}. Hence {d(T"xo, T"x1)}
converges to «.
Since 0 < a < d(zp,x1) < 00, there exists d > 0 and pe € N such that

Yu,(t) <a forallt € o, a4+ d2).
We choose ps € N with d(T#3xq, T"321) < a + d2. Then we have
d(TH2 0T s 2o, T*? 0T 1) < @py (M (TH8 20, T*31)) < v,

which is a contradiction. This proves (2.1).
Let u € X and define a sequence {u,} in X by u, = T"u, n € N. From (2.1),
limy, (tp, upt1) = 0. Now we show that

(2.4) lim sup d(up, um) = 0.

nN—=Xm>n
Let € > 0 be fixed. Then there exists § € (0,¢) and 4 € N such that ¢, () <e
for all ¢t € [e,e+04]. For such d4 there exists ps € N such that d(uy, tnt1) < /14
for every n > ps. We assume that there exist k,m € N with m > k > us and
d(ug, wy,) > 2e. Then we put I =min{j € N: k < j,e + 04 < d(u,u;)}. Since

-1

-1
1) )

254<6+(54§d(uk,ul)§ d(Uj,Uj_H Szi:(lfk)i,

— — M4 Ha
j=k j=k

we have 2uy <1 — k. Hence k <1 — p4. Now
dwr, W—py) = d(ug, w) — d(U—py, w)
pa—1 54
> d(up,uy) — Z d(up—j_1,u—j) > €+ 04 — pu— = €.

j=0 Ha

Since € < d(ug, u—p,) <e+9,
AWy w) = AT g, Ty y,) < (M (ug, wi—p,)) < e

Therefore

Ha
1)
d(ug,uy) < § AUk j—15 W) + AWk gy 1) < M4IT4 +e=10d04+¢.
3 4
Jj=1

This contradicts the definition of [. Therefore m > n > ps implies d(uy,, Um) <
2z, and (2.4) holds. So {u,} is Cauchy sequence.
Since X is complete, there exists z € X such that {u,} converges to z. Now
from the continuity of T,
z= lim T"™"z = lim T*oT"z = T*( lim T"z) = T*2.

n—oo n—oo n—oo
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Thus z is a fixed point of T*. Recall that (2.1) is true for any arbitrary point
xo € X. So, by (2.1), we have

lim d(T"* 'z, T2) = lim d(T"*ag, T 12) = lim d(T"x0,T"2) = 0.

n—oo n—oo n—oo

This yields Tz = z. If w is another fixed point of T' then by (2.1),

d(z,w) = nlingo d(T"w, T"z) =0,
and z = w. This completes the proof.

We remark that the contracting condition (S3) of Suzuki’s Theorem 1.3 is
included in the condition (A3) of Theorem 2.1. So Theorem 2.1 is a generalization
of Theorem 1.3.

Now we extend the scope of Theorem 1.3 by introducing a new map f in
Theorem 1.3. The idea of the following theorem comes essentially from Jungck [5]
and Singh and Pant [10].

THEOREM 2.2.  Let Y be an arbitrary set, (X,d) a metric space. Let and
T,f:Y — X such that T(Y) C f(Y) and

(B1) limsup,, @n(e) <e foralle > 0;

(B2) for each € > 0 there exists 6 > 0 and p € N such that ¢, (t) < e for all
t€le,e+9];

(B3) d(T"z,T™y) < gan(d(fx, fy)) for alln € N and x,y € X with x # y.

IfT(Y) or f(Y) is a complete subspace of X then T and f have a coincidence.

Further, if Y = X, then T and f have a unique common fixed point provided

that T and f commute just at a point.

PROOF. Pick 2o € Y. Define a sequence {y,} by yn = Txp = frni1,
n=0,1,2,.... We can do so since the range of f contains the range of T. First
we show that

lim d(Txy, TTpt1) = Um d(yn, Ynt1) = 0.

n—oo

Assume that « := limsup,, d(Tx,, T¢,11) > 0. From the condition (B2), we can
choose 1 € N satisfying ¢, (d(zo, 1)) < d(xo,21). By (B3) and (B2),

(25) d(Tan ) T:Z:,Lu-‘rl) < Puq (d(fifoa fxl)) S d(f$0a fxl)
Then, proceeding as in the proof of Theorem 2.1,
a:= lim supd(Txy,+n, Ty, +nt1)

< nh_)n;o sup on (AT, T2y, 41))

< d(Txp, , Trp,41) < pud(fro, fr1) < d(fzo, fz1).
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Using (2.5) and (B2) and proceeding as before, we have d(T'xp, 4k, T%, +k41) <
Pur (AT, Topqr) < d(fok, friee), and

o= lim supd(T@p, +n+k, TTp, +ntk+1)
n—oo

< nh—{%o Sup @n (d(TxH1+l€? T-Tul-i-k-i-l))

< d(Txﬁu ) Txul-‘rl) < (pknd(kaa ka-‘rl)
<d(fzy, frrr) = d(Txgp—1, Toy).
Thus we obtain o < d(Txg—1,Txy) for all k € NU{0}. Hence {d(Txy, Txni1)}
converges to .
Since 0 < a < d(fzo, fx1) < 00, there exists o > 0 and p2 € N such that
Yu,(t) < forall t € [a, o + 2]

We choose p3 € N with d(Tz,,, Tx,,+1) < a + 2. Then we have

ATT st pgs Ty s +1) < Prad(T2py, Tpgi1) < v,
a contradiction. This proves that lim,, oo d(Yn, Yn+1) = 0.
Now we show that {y,} is a Cauchy sequence. Suppose {y,} is not Cauchy.

Then there exists § > 0 and increasing sequences {my} and {n;} of positive
integers such that for all n < my < ny,

d(ymk7ynk) 2 ﬂ a‘nd d(ymk7ynk—1) < ﬂ

By the triangle inequality,

AYmis Yni) < AYmics Yni—1) + AUy 15 Yny.)-
Making k — 00, d(Ym,, Yn, ) < 8. Thus d(Ym, ,yn,) — B as k — co. By (B2),
AWmp4ns Ynitn) = AT Ty m; Ty 4n)
< <Pn(d(f3?mka fxnk)) = @n(d(ymrl,ynrﬁ)-
Making k — o0, 8 < ¢,(8) < B, a contradiction and the sequence {y,} is
Cauchy.

Suppose f(Y) is complete. Then {y,} being contained in f(Y") has a limit in
f(Y). Callit 2. Let u € f~'2. Then fu = z. Using (B2),

d(Tu,Tzy) < o(d(fu, fz,)).

Making n — oo, d(Tu,z) < ¢(0) < 0. Therefore Tu = z = fu.
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If Y = X and the pair (T, f) commutes at u then T fu = fTu and TTu =
Tfu= fTu= ffu. In view of (B2), it follows that

d(Tu, TTu) < ¢(d(fu,Tu)) = ¢(0) < 0.

SoTTu=Tu and fTu=TTu=Tu = z.

In case T(Y) is a complete subspace of X, then the sequence {y,} converges
in f(Y) since T(Y) C f(Y). So the previous proof works. The unicity of the
common fixed point follows easily.

The following examples show the superiority of Theorem 2.2 over Theo-
rems 1.2 and 1.3.

ExXAMPLE 1. Let X = [1,00) with the usual metric d. Let T: X — X such
that Tz = x and ¢, (t) = 2 for all nonnegative ¢ (or any other choice of ¢,
with ¢, (t) < t).

It can be easily seen that Theorems 1.2 and 1.3 are not applicable to this
map T. If we take fr = 22 for all x € X then T and f satisfy all the hypotheses
of Theorem 2.2, and T1 = f1 = 1.

EXAMPLE 2. Let X = [0,00) with the usual metric d. Let T: X — X be
such that

x if x is rational,
Tz = e
0 if z is irrational.

Notice that d(T"z,T"y) = |z — y| and ¢, (d(z,y)) = eul(lz — y|) < |z — y|
for distinct z,y. So (S3) of Theorem 1.3 can not be satisfied. However, if we
take f: X — X such that foz = 2x then T and f satisfy all the hypotheses of
Theorem 2.2, and 70 = f0 = 0.
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