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Abstract. In this note we apply a modification theorem for compact
homogeneous solvmanifolds to compact complex homogeneous manifolds
with pseudo-Kählerian structures. We are then finally able to classify these

compact pseudo-Kählerian manifolds as certain products of projective ra-
tional homogeneous spaces, tori, and simple and double reduced primitive
pseudo-Kähler spaces.

Résumé. Dans cette note, nous appliquons un théorème de mod-
ification pour des “solv-variétés” compactes et homogènes aux variétés
compactes complexes equipées d’une structure pseudo-kählérienne. Nous
obtenons une classification de ces variétés compactes pseudo-kählériennes

sous la forme de certains produits d’espaces projectifs rationnels et ho-
mogènes, de tores, et d’espaces pseudo-kählériens réduits et primitifs sim-
ples ou doubles.

Compact complex homogeneous spaces with invariant Kähler structures were
classified by Matsushima [Mt]. Compact complex homogeneous spaces with
Kähler structures (not necessary invariant) were classified by Borel and Remmert
[BR]. Compact complex homogeneous spaces with invariant pseudo-Kählerian
structures were classified by Dorfmeister and Guan [DG]. In this note, I shall
give a complete classification of compact complex homogeneous manifolds with
(not necessarily invariant) pseudo-kählerian structures.

I previously reduced the classification to the case of a solvable parallelizable
action in [Gu4] (see the Main Theorem 3 therein), following the plan proposed
in [Gu1] and [Gu2].

An application of the modification argument in [Gu4, Corollary 1] is the so-
called complex parallelizable right invariant pseudo Kählerian algebra. This is
what has made the present classification possible.

Moreover, at the group level, I proved [Gu5] that the given group G can be
decomposed as G = AN with two abelian subgroups A and N (for partial results,
see also [DG, Corollary 1, p. 509], [Gu4, Corollary 2], [Ym2], and the action of
A on N is an algebraic group action of a product of C∗s.

If the Lie algebra of A acts on N with only one pair of eigenvalue functions
k1 and k2 = −k1, then we will call the given compact complex parallelizable
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homogeneous manifold with a pseudo-Kählerian structure a primary pseudo-

Kähler manifold.

Theorem 1. Every compact complex parallelizable homogeneous manifold

with a pseudo-Kählerian structure is a pseudo-Kählerian torus bundle over a

pseudo-Kählerian torus and, up to a finite covering of the fiber, is a torus bundle

which is the bundle product of several primary pseudo-Kählerian manifolds.

The bundle product in Theorem 1 is the fiberwise product. More details
concerning the statement of this result can be found in [Gu5].

Let us call a primary pseudo-Kählerian manifold a reduced primary pseudo-

Kählerian manifold if the action of A on N is effective. Notice that we may
always change a given invariant form ω1 on A to any other such form. As a
consequence we have the following.

Theorem 2. After modifying ω1, if necessary, any primary pseudo-Kähle-

rian manifold, up to a finite covering, is the product of a torus and a reduced

primary pseudo-Kählerian manifold. Moreover, dimC A = 1 and dimC N = 2m
with m the complex dimension of the eigenspaces for a reduced primary pseudo-

Kählerian manifold. In particular, the index of the pseudo-Kählerian structure

for a reduced primary pseudo-Kähler space is either 1 or −1.

For any reduced primary pseudo-Kähler space, we have k1(z) = z and
k2(z) = −z. The fiber torus up to a finite covering can be split into com-
plex irreducible ones with respect to the A action. For a primary pseudo-Kähler
space, if the fiber is also an irreducible complex torus with respect to the A
action, then we will call it a primitive pseudo-Kähler space. If the A action is
also effective, then we will call it a reduced primitive pseudo-Kähler space. By
changing ω1 on A we can always obtain any primary pseudo-Kähler space, up to
a finite covering, from a torus bundle product of primitive ones.

For any reduced primitive pseudo-Kählerian space, the rational module gener-
ated by the discrete subgroup NZ of N , as a rational representation of
F = ΓN/N , can be split into two-dimensional representations, but in this case
m can be any positive integer.

In general, set AF = ΓN/N and T = A/AF.

Theorem 3. Any compact complex parallelizable homogeneous space with

a pseudo-Kähler structure is a pseudo-Kählerian torus bundle over a pseudo-

Kählerian torus T and, up to a finite covering of the fiber, is a torus bundle

over T which is the bundle product of several primitive spaces. Moreover, any

primitive space is, up to a finite covering, a product of a torus and a reduced

primitive space. For a primitive pseudo-Kählerian manifold, m can be any given

positive integer.

Let us call a primitive pseudo-Kähler space a simple primitive pseudo-Kähler

space if N/NF is a simple complex torus. Let us call a primitive pseudo-Kähler
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space a double primitive pseudo-Kähler space if N/NF is isogenous to the product
of two identical complex tori. The example in [Ym1] is a double reduced primitive
pseudo-Kählerian space.

Theorem 4. Let M be a reduced primitive pseudo-Kähler space. If M is

not a simple primitive pseudo-Kähler space as defined above, then it is a double

reduced primitive pseudo-Kähler space.

Theorem 5. Within the class of reduced primitive pseudo-Kähler spaces,

the simple ones are generic.

Combining these results with our splitting theorem [Gu4, Main Theorem 3]
and our results in [Gu2], we have the following.

Theorem 6. Every compact complex homogeneous manifold with a pseudo-

Kählerian structure is the product of a projective rational homogeneous space and

a solvable compact complex parallelizable pseudo-Kähler space. In particular, any

compact complex parallelizable pseudo-Kähler space is solvable. Moreover, any

compact complex parallelizable pseudo-Kähler space is a pseudo-Kählerian torus

bundle over a pseudo-Kählerian torus T and, up to a finite covering of the fiber,

is a torus bundle over T which is the bundle product over T of several simple

and double primitive pseudo-Kähler spaces.

Background remarks. A possible classification of compact complex ho-
mogeneous spaces with pseudo-Kählerian structures was proposed in [Gu1] and
[Gu2].1 However, the classification turns out to be much more complicated than
suggested therein [Gu4], [Ha], [Ym1], [Ym2]. I received a reprint of [Ym2] only
after submitting [Gu4], and a preprint of [Ha] only after completing [Gu5].2 In
this paper, I provided the last piece of this puzzle, thereby completely solving
this problem. What was missing in [Gu1] and [Gu2] was the calculation of the co-
homology group of a compact solvmanifold. That problem was resolved in [Gu4],
using techniques in [Gu3]. The complete proof, which is quite technical, is given
in [Gu5].
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