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DIOPHANTINE INEQUALITY FOR EQUICHARACTERISTIC

EXCELLENT HENSELIAN LOCAL DOMAINS

HIROTADA ITO AND SHUZO IZUMI

Presented by Edward Bierstone, FRSC

Abstract. G. Rond has proved a Diophantine type inequality for the
field of quotients of the convergent or formal power series ring in multivari-

ables. We generalize his theorem to the field of the quotients of an excellent
Henselian local domain in equicharacteristic case.

Résumé. G. Rond a démontré une inégalité de type diophantien pour
le corps des quotients de séries convergentes (ou formelles) à plusieurs
variables. On fait ici une généralisation de son théorème au corps des

quotients d’un anneau local intégral henselien excellent dans le cas équi-
caractéristique.

1. Introduction. An important topic of Diophantine approximation is
the problem of approximation of a real algebraic number by rational ones. The
crucial result is Roth’s theorem:

If z ∈ R \ Q is an algebraic number,

∀ǫ > 0∃c(z, ǫ) > 0∀x ∈ Z∀y ∈ Z∗ :
∣

∣

∣
z −

x

y

∣

∣

∣
> c(z, ǫ)|y|−2−ǫ.

There are quite similar results for the Laurent series field in a single variable
(cf. [L]). It is also known that there are deep analogous results on the global
function fields on certain special varieties in connection with Nevanlinna’s theory
(cf. [Ru]).

Rond [Ro2] obtained a Diophantine inequality for the field of quotients of
the convergent or formal power series ring in multivariables in connection with
the linear Artin approximation property (Spivakovsky, cf. [Ro1]). He used the
product inequality [Iz1] for the order function ν on an analytic integral domain.

In this paper we assert that Diophantine inequality holds for the field of quo-
tients of an equicharacteristic excellent Henselian local domain. For the proof,
we need Rees’s inequality [Re4] for m-valuations on complete local rings, a vari-
ant of the product inequality. To be precise, we use its generalization to excellent
domains by Hübl–Swanson [HS].
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An inequality on the order function was once used for zero-estimate of ele-
ments transcendental over the polynomial ring generated by a parameter system
in a local ring in [Iz2]. This time we are concerned with elements algebraic over
a local ring.

Let us give a precise description of our theorem. Let K be a (commutative)
field. We call a mapping v : K −→ R (R := R ∪ {∞}) a valuation when it
satisfies the following:

(1) v(xy) = v(x) + v(y),
(2) v(x + y) ≥ min{v(x),v(y)},
(3) v(0) = ∞.

We can define the absolute value | · |v : K −→ R by |w|v := exp
(

−v(w)
)

(|0|v :=
0). Then K is a metric space defined by the absolute value of the difference.
This defines a topology compatible with the field operations. We endow R with
the discrete topology. Then v : K∗ −→ R (K∗ := K \ 0) is continuous. We put:

Vv := {z ∈ K : v(z) ≥ 0}: the valuation ring of v,
mv := {z ∈ K : v(z) > 0}: the maximal ideal of Vv,
kv := Vv/mv: the residue field of v,
K̂: the completion of K with respect to v, which has a natural structure of a
field,
v̂: the continuous extension of v to K̂, which is a valuation on K̂,
V̂v: the valuation ring of the extension v̂.

A valuation is called a discrete valuation if the value group v(K∗) is isomor-
phic to Z as an ordered group. In this case the valuation ring Vv is a discrete
valuation ring (DVR) and v coincides with the mv-adic order on Vv and we have
K = Q(Vv). The completion B̂ of some subset B ⊂ K can be identified with its
closure in K̂. Our main result is the following.

Let (A, m) be an equicharacteristic analytically irreducible excellent Henselian
local domain and v an m-valuation (defined in the next section) on the field
K := Q(A) of quotients of A. If z ∈ K̂ \ K is algebraic over K, then we have
the following:

∃a > 0∃c > 0∀x ∈ A∀y ∈ A∗ :
∣

∣

∣
z −

x

y

∣

∣

∣

v̂

> c|y|a
v
.

Note that K̂ is not generally the field quotients of Â (cf. [Ro1, 2.4]). The
essential point of the proof is reducing inequality on the valuation to inequality
on the maximal-ideal-adic order in the same way as in [Ro2, Section 4, (v)].
In our general case, we need Rees’s valuation theorem [Re2], [Re3] to connect
valuations to the order.

Contrary to the case of algebraic numbers, the exponent on the right of this
inequality is not uniformly bounded. Rond [Ro1, 2.4] has given a sequence of
elements zi ∈ K̂ of degree 2 over K with unbounded exponents.
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2. m-valuations on local domains. Let (A,m) be a local domain whose
field of quotients Q(A) is K. Let k := A/m denote the residue field. A valuation
v on K is called an m-valuation, if it satisfies the following:
(a) x ∈ A =⇒ v(x) ≥ 0,
(b) x ∈ m =⇒ v(x) > 0,
(c) trdegk kv = dim A − 1,
(d) the value group v(K∗) is isomorphic to Z (as an ordered group).

Let us recall some key facts on valuations which are used in the proof. The
first one is Rees’s strong valuation theorem [Re3]. We state only the special
case which we need later. We define the m-adic order νm : A −→ R on A by
νm(f) := max{p : f ∈ m

p}. This is not necessarily a valuation. It satisfies
formulae
(1′) νm(fg) ≥ νm(f) + νm(g),
(2) νm(f + g) ≥ min{νm(f), νm(g)},
(3′) νm(0) = ∞, νm(1) = 0.

Let us stabilize νm by Samuel’s idea: νm(f) := limk→∞ νm(fk)/k. This limit
always exists and satisfies formulae (1′), (2), (3′) and the homogeneity formula
(4) νm(fn) = nνm(f) (n ∈ N)
also (see [Re1]). The following is Rees’s Strong valuation theorem.

Fact 2.1 ([Re2,Re3]). Let (A,m) be a Noetherian local ring whose m-adic
completion is reduced (has no non-zero nilpotent element). Then there exist a
non-negative number C and a set of valuations v1, . . . ,vp on K with the value
group Z such that

∀x ∈ A : νm(x) ≤ νm(x) ≤ νm(x) + C,

∀x ∈ A : νm(x) = min{r1v1(x), . . . , rpvp(x)} (ri := 1/min{vi(y) : y ∈ m}).

The set {v1(x), . . . ,vp(x)} is unique, if it is taken to be irredundant.

We call the irredundant valuations v1, . . . ,vp the valuations associated with m.
We call a local ring analytically irreducible when its m-adic completion is an
integral domain. Rees proves the following:

Fact 2.2 ([Re1, 5.9]). Let (A,m) be an equicharacteristic analytically irre-
ducible local domain. Then the valuations associated with m are all m-valuations.

In the proof of the regular analytic case, Rond [Ro2] uses the product in-
equality [Iz1] for analytic domain. Rees generalises this inequality and, in the
complete domain case, gives a valuation theoretic form [Re4, E]. Hübl and Swan-
son generalise the latter to excellent domains as follows:

Fact 2.3 ([HS, 1.3]). Let (A,m) be an analytically irreducible excellent lo-
cal domain. Then for any pair of m-valuations v and v

′, we have the following.

∃d > 0∀x ∈ A : v(x) ≤ dv
′(x).

The constant d can be chosen independently of v
′.
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Combining these facts, we see the following:

Fact 2.4. Let (A,m) be an equicharacteristic analytically irreducible ex-
cellent local domain and let v be an m-valuation on A. Then we have:

∃C > 0∃s > 0∃t > 0∀x ∈ A : sv(x) ≤ νm(x) ≤ νm(x) + C ≤ tv(x) + C.

3. Main theorem. With the notation in the introduction, our main the-
orem is the following.

Theorem 3.1. Let (A,m) be an equicharacteristic analytically irreducible
excellent Henselian local domain and let K := Q(A) denote its field of quotients
and let v : K −→ R be an m-valuation. If z ∈ K̂ \ K is algebraic over K, then
we have

∃a > 0∃c > 0∀x ∈ A∀y ∈ A∗ :
∣

∣

∣
z −

x

y

∣

∣

∣

v̂

> c|y|a
v
.

Just in the same way as Rond [Ro2, 3.1] (see also [Ro1, 2.1]), our Theorem 3.1
implies the following.

Corollary 3.2. Let (A,m) be an equicharacteristic analytically irreducible
excellent Henselian domain and let P (X,Y ) ∈ A[X,Y ] be a homogeneous poly-
nomial. Then the Artin function of P (X,Y ) is majorised by an affine function,
i.e.,

∃α ∃β ∀x ∈ A∀y ∈ A : νm

(

P (x, y)
)

≥ αi + β

=⇒ ∃x ∈ A ∃y ∈ A : νm(x − x) ≥ i, νm(y − y) ≥ i, P (x, y) = 0.

This corollary reminds us of the theorem that an excellent Henselian local ring
has the strong Artin approximation property (cf. [P]). The case P (X,Y ) = xy
is nothing but the product inequality.

4. Proof of Theorem 3.1.

(i) Reduction to normal case.
We may assume that v(K∗) = v(K̂∗) = Z. This results in a change of the

exponent a. Let Ã denote the normalization (the integral closure of A in K) of
A. Since A is a Henselian integral domain, Ã is a local ring by [N, 43.11 and
43.20]. Since A is excellent,

(1) A is a G-ring and a Nagata (= pseudo-geometric) ring

by [M, 33.H]. Then Ã is a finite A-module. Hence dim A = dim Ã by a theorem
of Cohen–Seidenberg (cf. [N, 10.10]) and rÃ ⊂ A for some r ∈ A∗ (existence
of a universal denominator). Then a Diophantine inequality for Ã implies one
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for A with the same exponent a. Finiteness also implies that Ã is excellent and
Henselian by [N, 43.16].

Let m̃ denote the maximal ideal of Ã. We claim that v is an m̃-valuation. If
x ∈ Ã,

∃p ∈ N,∃b0, . . . , bp−1 ∈ A : xp = bo + b1x + · · · + bp−1x
p−1.

Then we have pv(x) ≥ min{iv(x) : 0 ≤ i ≤ p − 1}. This proves Ã ⊂ Vv and
condition (a) for (Ã, m̃). Let us put m := {x ∈ Ã : v(x) > 0}. Then m is a
prime ideal of Ã and m ∩ A = m. This implies that m = m̃ by [B, Chap. 5,
2.1, Proposition 1], and (b) holds. Since Ã is a finite A-module, k̃ = Ã/m̃ is
a finite k-module (k := A/m), i.e., k̃ is algebraic over k. This proves (c). The
condition (d) is obvious. We have proved the claim and we may assume that

(2) A is an equicharacteristic, excellent, Henselian and normal local domain.

(ii) Reduction of the minimal equation.
Let

ϕ(Z) := a0 + a1Z + · · · + adZ
d (ad 6= 0, d ≥ 2)

be a minimal equation for z over A, that is, ϕ is a polynomial of the minimal
degree in A[Z] with ϕ(z) = 0. Now take u ∈ A∗ and put

ϕu(Z) := udad−1
d ϕ(Z/uad).

Then we have

ϕu(Z) = a0u
dad−1

d + a1u
d−1ad−2

d Z + · · · + Zd ∈ A[Z]

and w′ ∈ K̂ is a root of ϕu(Z) if and only if w := w′/uad is a root of ϕ(Z). If

∃a ≥ 0∃c > 0∀x ∈ A∀y ∈ A :
∣

∣

∣
z′ −

x

y

∣

∣

∣

v̂

> c|y|a
v

holds for z′ := uadz, we have

∃a ≥ 0∃c > 0∀x ∈ A∀y ∈ A :
∣

∣

∣
z −

x

y

∣

∣

∣

v̂

>
c

|uad|
|y|a

v
.

The polynomial ϕu(Z) ∈ A[Z] is minimal for z′. Thus, choosing u, we may
assume that z ∈ V̂v and

(3) ϕ(Z) := a0 + a1Z + · · · + ad−1Z
d−1 + Zd (d ≥ 2, ai ∈ m

d−i)

from the first.
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(iii) Order function on A[z] (the ring generated by z over A).
Let us consider the residue ring B := A[Z]/ϕ(Z)A[Z]. There is an isomor-

phism ι : B −→ A[z]. The ring B is a finite A-module with basis 1, z, z2, . . . , zd−1.
Since A[z] is a subring of the field K̂, B is an integral domain. Thus we have
the following:

(4) A[z] ∼= B := A[Z]/ϕ(Z)A[Z] is an integral extension of A.

Since A is Henselian, B is a local ring by (4) and by [N, 43.12]. As a con-
sequence of (II), zd ∈ mA[z]. Hence the maximal ideal of B is n := mB + ZB
and its residue ring is the same as that of A: k = A/m = B/n. Let us define
µ : A[Z] −→ R by

µ
(

e
∑

i=0

biZ
i
)

:= min
i
{νm(bi) + i} (bi ∈ A),

and νn : B −→ R as the n-adic order. The function µ is nothing but the re-
striction of the standard order on the formal power series ring A[[Z]]. We claim
that νn(x) coincides with the µ-order of the unique representative of x in A[Z]
of degree less than d, i.e.,

µ
(

d−1
∑

i=0

biZ
i
)

= νn

(

d−1
∑

i=0

biZ
i mod ϕ(Z)A[Z]

)

.

We have only to show that inequality

µ
(

d−1
∑

i=0

biZ
i
)

< µ
(

d−1
∑

i=0

biZ
i +

d
∑

0

aiZ
i

e
∑

j=0

cjZ
j
)

leads us to a contradiction. Let us develop the product
∑d

i=0 aiZ
i
∑e

i=0 cjZ
j and

reduce its degree in Z by repeated substitutions Zd = −
∑d−1

i=0 aiZ
i, beginning

from the highest degree term. By the assumption ai ∈ m
d−i
A , the substitutions do

not lower the µ-order and we reach the left side. This contradicts the inequality
we assumed.

The function νn induces ν := νn
◦ ι−1 : A[z] −→ R. Of course ν inherits the

non-cancellation property from νn:

ν
(

d−1
∑

i=0

biz
i
)

= min{ν(bi) + i : 0 ≤ i ≤ d − 1} = min{νm(bi) + i : 0 ≤ i ≤ d − 1}.

In other words, there occurs no cancellation among summands of degree less
than d.
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(iv) A[z] is analytically irreducible.
Since A is a normal G-ring, it is analytically normal, i.e., the completion Ǎ

with respect to the m topology is normal , by [M, 33.I]. Hence, by 2.4 we have

(5) Â = Ǎ is normal.

by [M, 33.I]. Let m
′ denote the maximal ideal of A[z]. Taking the last equality

of (III) into account, we see that the m
′-adic completion of A[z] is isomorphic to

Â[z] ⊂ K̂. Hence A[z] is an analytically irreducible domain. (This can be also
deduced from [N, 44.1] and (1), (4), (5).) Now we can apply 2.4 to A[z].

(v) Diophantine inequality.
We claim that the restriction v̂|Q(A[z]) is an m

′-valuation. By the reduc-
tion (II) we see that z ∈ V̂v using the argument in (I) and (a) follows. Since
m

′ is generated by m and z, the condition (b) is satisfied. Take any element
x ∈ V̂v ∩ K[z]. There exists a nontrivial polynomial relation

c0 + c1x + · · · + cp−1x
p−1 + cpx

p = 0 (ci ∈ A).

If t is a generator of mv ⊂ Vv, we have the expressions

ci = c′it
αi (αi ∈ {0, 1, 2, . . . }, c′i ∈ Vv \ mv).

We may assume that some αi is zero. Then the equation implies that x mod m̂v∩
K[z] is algebraic over kv = Vv/mv. Therefore (V̂v∩K[z])/(m̂v∩K[z]) is algebraic
over kv and we have

trdegA[z]/m
′(V̂v ∩ K[z])/(m̂v ∩ K[z]) = trdegk(V̂v ∩ K[z])/(m̂v ∩ K[z])

= trdegk kv = dim A − 1 = dim A[z] − 1.

Here the third equality follows from (c) for v. This equality implies (c) for v̂|K[z].
The condition (d) is trivial. This completes the proof of the claim.

If v̂(z − x
y ) ≤ v̂(z), we have |z − x

y |v̂ ≥ exp
(

−v̂(z)
)

at once. Hence we may

assume that v̂(x − yz) − v(y) > v̂(z). If v(x) 6= v̂(yz), we have a contradiction:

v̂(z) < v̂(x − yz) − v(y) ≤ v̂(yz) − v(y) = v̂(z).

Hence we have only to consider the case

v(x) = v̂(yz) = v(y) + v̂(z).

Since A[z] is analytically irreducible, applying the inequality 2.4 and the equality
at the last part of (III), we have

sv̂(x − yz) ≤ νm
′(x − yz) + C ≤ νm

′(x) + C ≤ tv(x) + C.
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It follows that

sv̂
(

z −
x

y

)

≤ tv(x) − sv(y) + C = (t − s)v(y) + tv̂(z) + C.

This implies the inequality of our theorem.
If a = 0, z is isolated from K and cannot be in K̂. Hence we see that a > 0.

References
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