A NOTE ON GAGLIARDO-NIRENBERG TYPE INEQUALITIES ON ANALYTIC SETS

To my advisor Pierre Milman, on the occasion of his coming birthday

DAMIR KINZEBULATOV

Presented by Pierre Milman, FRSC

ABSTRACT. Given an analytic set X and $x \in X$, we show that X admits (in a relatively compact neighbourhood of x) a modified Gagliardo–Nirenberg inequality, depending on a certain exponent $s \geqslant 1$ (s=1 in case of a manifold). The infimum of the set of all such s characterizes, in a sense, the type of singularity at x.

RÉSUMÉ. Etant donné un ensemble analytique X et $x \in X$, nous montrons que X admet (dans un voisinage relativement compact de x) une inégalité de Gagliardo–Nirenberg modifiée, en fonction d'un certain exposant $s \geqslant 1$ (s=1 dans le cas d'une variété). La borne inférieure de l'ensemble de tous ces s caractérise, en un sens, le type de singularité en x.

The classical Gagliardo–Nirenberg inequality is valid for functions defined on a compact domain in \mathbb{R}^n having sufficiently "good" boundary. As was shown in [5], in the case when the boundary of the domain has outward pointing cusps, a Gagliardo–Nirenberg inequality holds but with a certain exponent $s \ge 1$ (s = 1 in the case of a boundary). In the present note we show the validity of Gagliardo–Nirenberg inequalities (in quotient norms) for sufficiently "good" functions defined on a real or complex analytic set, also with a certain exponent $s \ge 1$ (s = 1 in case of a manifold), and we give an example of an algebraic set with an isolated singularity which does not admit a Gagliardo–Nirenberg inequality with any exponent smaller than a certain value s > 1.

1. Introduction: Gagliardo-Nirenberg inequalities in the smooth case. Consider first the case of a real analytic set. Let N be a relatively compact open subset of \mathbb{R}^n . Given $f \in C^{\infty}(\bar{N})$ and $m \in \mathbb{Z}_+ := \mathbb{N} \cup \{0\}$, we define

$$(1.1) |f|_m^N := \sum_{|\gamma| \leqslant m} |D^{\gamma} f|^N,$$

where $\gamma = (\gamma_1, \dots, \gamma_n) \subset \mathbb{Z}_+^n$, $D^{\gamma} = \frac{\partial^{\gamma_1}}{\partial^{\gamma_1} x_1} \cdots \frac{\partial^{\gamma_n}}{\partial^{\gamma_n} x_n}$, and $|\cdot|^N$ is the ordinary sup-norm on N.

Received by the editors on April 18, 2008; revised May 28, 2008.

AMS Subject Classification: Primary: 32S05; secondary: 26D10.

Keywords: Gaglardo-Nirenberg inequality, analytic sets, resolution of singularities.

© Royal Society of Canada 2009.

Let X be a real analytic set in \mathbb{R}^n (assumed to be the closure in \mathbb{R}^n of the set of its smooth points), $x \in X$. Given a relatively compact neighbourhood U of $x \in \mathbb{R}^n$ and a function $f \in C^{\infty}(\bar{U})$, we define its quotient-norm

(1.2)
$$||f||_{m,X}^U := \inf_{(h=f)|_{U\cap X}} |h|_m^U,$$

where the infimum is taken over all $h \in C^{\infty}(\bar{U})$ such that h = f on $X \cap U$.

We will say that X admits a Gagliardo–Nirenberg inequality at $x \in X$ with exponent $s \ge 1$ if there exist a neighbourhood U of $x \in \mathbb{R}^n$ and constants $C_m > 0$ such that for all $f \in C^{\infty}(\bar{U})$ $(f \not\equiv 0 \text{ on } X \cap U)$, all m and all $1 \le k < m/s$ we have

(1.3)
$$\frac{\|f\|_{k,X}^U}{\|f\|_{0,X}^U} \leqslant C_0 C_m^k \left(\frac{\|f\|_{m,X}^U}{\|f\|_{0,X}^U}\right)^{\frac{sk}{m}}.$$

If s = 1, and the quotient norms in (1.3) are replaced with the ordinary sup-norms on a relatively compact domain in \mathbb{R}^n with smooth boundary, (1.3) becomes the classical Gagliardo-Nirenberg inequality, see [5].

PROPOSITION 1. Suppose that x is a regular point of X. Then X admits a Gagliardo-Nirenberg inequality at x with exponent s=1.

PROOF. Let $x=0\in X$. There exists a relatively compact neighbourhood U of $0\in\mathbb{R}^n$ such that $X\cap U$ is an analytic manifold. Without loss of generality, $X\cap U$ is a coordinate chart. There exists an analytic diffeomorphism $\psi\colon U'\mapsto U$, where $U'\subset\mathbb{R}^n$ is relatively compact, such that $\psi^{-1}(X\cap U)=U'\cap\mathbb{R}^p,\ p\leqslant n$. Let $U'_0\subset U'$ be an open subset such that $U'_0\cap\mathbb{R}^p$ has smooth boundary and $U_0:=\psi(U'_0)\ni 0$. Then the norms

$$\|\cdot\|_{m,X}^{U_0}$$
 and $\|\psi^*\cdot\|_{m,\psi^{-1}(X\cap U_0)}^{U_0'}$

are equivalent, and

$$\|\psi^* f\|_{m,\psi^{-1}(X\cap U_0)}^{U_0'} = |\psi^* f|_{m,\psi^{-1}(X\cap U_0)}^{U_0'},$$

since $\psi^* f := f \circ \psi$ can be extended from $\psi^{-1}(X \cap U)$ to U' as being constant with respect to the new variables. Since $\psi^{-1}(X \cap U)$ has smooth boundary and is relatively compact, it admits a classical Gagliardo-Nirenberg inequality with exponent s = 1. That is, there exist $C_m > 0$ such that

$$\frac{|\psi^*f|_{k,\psi^{-1}(X\cap U)}}{|\psi^*f|_{0,\psi^{-1}(X\cap U)}}\leqslant C_0C_m^k\Big(\frac{|\psi^*f|_{m,\psi^{-1}(X\cap U)}}{|\psi^*f|_{0,\psi^{-1}(X\cap U)}}\Big)^{\frac{k}{m}}$$

for all m and all $1 \le k < m$. This implies the required result.

2. Gagliardo-Nirenberg inequalities near singular points. Let us turn to the case when $x \in X$ can be a singular point.

Let M be a smooth manifold and N be a relatively compact open subset of M. There exist finitely many coordinate charts S_i on M with coordinate maps $\eta_i \colon S_i \mapsto \mathbb{R}^l$ $(l = \dim(M))$ which cover N. Furthermore, we can find finitely many relatively compact open subsets $T_j \subset M$ such that $T_j \subseteq S_i$ for certain i = i(j) (in what follows, let us fix some choice of i), and $N \subset \bigcup_j T_j$. Given $f \in C^{\infty}(\bar{N})$, define

$$|f|_m^N = \max_i |\eta_i^* f|_m^{\eta_i^{-1}(T_j \cap N)} < \infty,$$

where $\eta_i^{-1}(T_j \cap N)$ is, evidently, relatively compact for each j and i = i(j), and the norms in the right-hand side of (2.1) are defined by (1.1).

The norm defined by (2.1) is determined by our choice of S_i , η_i , T_j and i = i(j). Nevertheless, it is easy to see that any two of such norms are equivalent. The following estimate follows straightforwardly from [4, pp. 774–775] and [1, p. 2].

PROPOSITION 2 ([1], [4]). Let $X \subset \mathbb{R}^n$ be an analytic set with $0 \in X$, and let $U \subset \mathbb{R}^n$ be a relatively compact neighbourhood of $0 \in \mathbb{R}^n$. Let M be an analytic manifold and let $\varphi \colon M \mapsto \mathbb{R}^n$ be a proper analytic map such that $\varphi(M) = X$. Then there exists a constant $c \in \mathbb{N}$ such that for all $f \in C^{\infty}(\overline{U})$ we have

$$||f||_{k,X}^U \leqslant C|\varphi^*f|_{ck}^{\psi^{-1}(X\cap U)}$$

for some fixed C > 0 for all $k \ge 1$.

PROPOSITION 3. Given an analytic set X, it admits a Gagliardo-Nirenberg inequality at any of its points x (with a certain exponent $s = s(x) \ge 1$).

PROOF. Without loss of generality, $0 \in X$, and we show that X admits a Gagliardo-Nirenberg inequality at 0 with certain exponent $s \ge 1$. Let $U = \{x \in \mathbb{R}^n : b_{\varepsilon}(x) < 0\}$, where $b_{\varepsilon} = \sum_{k=1}^n x_k^2 - \varepsilon$, be an open ball of sufficiently small radius $\varepsilon > 0$ centered at 0. There exists an analytic manifold M with dim $M = \dim X$ and a proper analytic function $\varphi \colon M \mapsto \mathbb{R}^n$ such that $\varphi(M) = X$ (see [2]). Define $N = \varphi^{-1}(X \cap U)$. Then N is a relatively compact subset of M.

First, we show that the sets T_j in the definition of the norm (2.1) can be chosen in such a way that $\eta_i^{-1}(T_j \cap N)$ is a relatively compact and semianalytic subset of \mathbb{R}^l ($l = \dim M = \dim X$). Let ι be an (analytic) embedding of M in \mathbb{R}^q for some q. Define

$$T_j := \iota^{-1} \big(\iota(M) \cap B(x_j, \varepsilon_j) \big),$$

a relatively compact subset of M, where $B(x_j, \varepsilon_j) \subset \mathbb{R}^q$ is the open ball of radius $\varepsilon_j > 0$ centered at $x_j \in \iota(M)$, and $\varepsilon_j > 0$ and x_j are chosen in such a way that

the remaining conditions on T_i in (2.1) are satisfied. We have

$$\eta_i^{-1}(T_i) = \{ x \in \mathbb{R}^l : (\eta_i^* \iota^* b_{\varepsilon_i})(x) < 0 \},$$

where $\eta_i^* \iota^* b_{\varepsilon_j}$ is an analytic function, and by definition, $\eta_i^{-1}(T_j)$ is semianalytic. Now since η_i is a diffeomorphism, $\eta_i^{-1}(T_j \cap N) = \eta_i^{-1}(T_j) \cap \eta_i^{-1}(N)$, where

$$\eta_i^{-1}(N) = \{x \in \mathbb{R}^l : (\eta_i^* \varphi^* b_c')(x) < 0\}, \quad b_c'(y) = \sum_{k=1}^n y_k^2 - c,$$

and $\eta_i^* \varphi^* b_c'$ is an analytic function. Thus, $\eta_i^{-1}(N)$ is also semianalytic, and $\eta_i^{-1}(T_i) \cap \eta_i^{-1}(N)$ is semianalytic as well.

Secondly, we show that there exist $\hat{s} \geqslant 1$ and $\hat{C}_m > 0$ such that, given any $f \in C^{\infty}(\bar{N})$, we have for all m and all $1 \leqslant k < m/\hat{s}$

$$\frac{|\varphi^* f|_k^N}{|\varphi^* f|_0^N} \leqslant \hat{C}_0 \hat{C}_m^k \left(\frac{|\varphi^* f|_m^N}{|\varphi^* f|_0^N}\right).$$

Indeed, since $\eta_i^{-1}(T_j \cap N)$ are semianalytic and relatively compact, we have, according to [5], that there exist $\hat{s}_j \geq 1$ and $\hat{C}_{mj} > 0$ such that for all m and all $1 \leq k < m/\hat{s}_j$

$$\frac{|\eta_i^* \varphi^* f|_k^{\eta_i^{-1}(T_j \cap N)}}{|\eta_i^* \varphi^* f|_0^{\eta_i^{-1}(T_j \cap N)}} \leqslant \hat{C}_{0j} \hat{C}_{mj}^k \left(\frac{|\eta_i^* \varphi^* f|_n^{\eta_i^{-1}(T_j \cap N)}}{|\eta_i^* \varphi^* f|_0^{\eta_i^{-1}(T_j \cap N)}} \right).$$

Let $\hat{s} = \max_{j} \hat{s}_{j}$, $\hat{C}_{m} = \max_{j} \hat{C}_{mj}$. Taking into account that

$$\max_{i} |\eta_{i}^{*} \varphi^{*} f|_{0}^{\eta_{i}^{-1}(T_{j} \cap N)} = |\varphi^{*} f|_{0}^{N},$$

we obtain, by definition of the norm (2.1), the required inequality. According to Proposition 2 there exists $c \in \mathbb{N}$ such that for all $f \in C^{\infty}(\bar{U})$ we have

for some fixed C > 0 for all $k \ge 1$. Along with that, it follows from the definition of the norm (2.1) and the fact that the sets $\eta_i^{-1}(T_j \cap N)$ are relatively compact, that there exists B > 0 such that

$$(2.4) |\varphi^* h|_m^N \leqslant B|h|_m^U$$

for any $h \in C^{\infty}(\bar{U})$. Since, given any $h \in C^{\infty}(\bar{U})$ such that $h|_X = f|_X$, we have $|\varphi^*h|_m^N = |\varphi^*f|_m^N$, we can take the infimum in (2.4) over all such h to get

(2.5)
$$|\varphi^* f|_m^N \leqslant B ||f||_{m,X}^U.$$

Next, as follows from the estimates (2.2), (2.3) and (2.5),

$$\frac{\|f\|_{k,X}^U}{\|f\|_{0,X}^U} \leqslant C \hat{C}_0 \hat{C}_m^{ck} B^{\frac{\hat{s}ck}{m}} \left(\frac{\|f\|_{m,X}^U}{\|f\|_{0,X}^U} \right)^{\frac{\hat{s}ck}{m}}.$$

for all m and all $1 \leqslant k \leqslant \frac{m}{\hat{s}c}$. To complete our proof we put $C_0 := C\hat{C}_0$, $C_m := \hat{C}_m^c B^{\frac{\hat{s}c}{m}} \ (m \geqslant 1)$ and $s := \hat{s}c$.

Let us note that the proof of Proposition 3 actually provides an estimate for s.

3. Examples

EXAMPLE 1. Let $X=\{(x,y)\in\mathbb{R}^2:y^q=x^p\}$, where q is even and $\frac{p}{q}>1$. Let us show that X does not admit a Gagliardo–Nirenberg inequality at 0 with any exponent smaller than $s=\frac{p}{q}$. We employ, with slight modification, the family of functions that was used in [5] for the proof of an analogous statement for a compact domain in \mathbb{R}^n .

(1) Suppose first that p is odd. Consider on $U = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ the family of functions $f_k(x, y) = y\varphi(1 - kx)$, where

$$\varphi(x) = \begin{cases} e^{-1/x} & x > 0, \\ 0 & x \leqslant 0. \end{cases}$$

Note that for each k

$$(3.1) e^{-1} = \left| \frac{\partial f_k}{\partial y}(0,0) \right| \leqslant \inf_{g_k|_{X \cap U} = f_k|_{X \cap U}} \sup_{(x,y) \in U} \left\{ \left| \frac{\partial g_k}{\partial x}(x,y) \right| + \left| \frac{\partial g_k}{\partial y}(x,y) \right| \right\}$$
$$\leqslant \|f_k\|_{1,X}^U.$$

The last inequality follows straightforwardly from the definition of the quotient norm. The first inequality holds due to the following two facts:

(a) given any $g_k \in C^{\infty}(U)$ such that $g_k|_{X \cap U} = f_k|_{X \cap U}$ we have that $\nabla g_k(0,0) = \nabla f_k(0,0)$, since for every k

$$\frac{\partial g_k}{\partial x}(0,0) = \lim_{x \to 0+} \frac{f_k(x, x^{\frac{p}{q}}) - f_k(0,0)}{x}$$

$$= \lim_{x \to 0+} \frac{\frac{\partial f_k}{\partial x}(0,0)x + \frac{\partial f_k}{\partial y}(0,0)x^{\frac{p}{q}} - o(|x|)}{x} = \frac{\partial f_k}{\partial x}(0,0),$$

and, similarly,

$$\frac{\partial g_k}{\partial y}(0,0) = \lim_{x \to 0+} \frac{f_k(x, x^{\frac{p}{q}}) - f_k(x, -x^{\frac{p}{q}})}{2x^{\frac{p}{q}}} = \frac{\partial f_k}{\partial y}(0,0),$$

(b) for any such g we have

$$\left| \frac{\partial f_k}{\partial y}(0,0) \right| = \left| \frac{\partial g_k}{\partial y}(0,0) \right| \le \left| \frac{\partial g_k}{\partial x}(0,0) \right| + \left| \frac{\partial g_k}{\partial y}(0,0) \right|$$

$$\le \sup_{(x,y) \in U} \left\{ \left| \frac{\partial g_k}{\partial x}(x,y) \right| + \left| \frac{\partial g_k}{\partial y}(x,y) \right| \right\},$$

so

$$\left| \frac{\partial f_k(0,0)}{\partial y} \right| \leqslant \inf_{g_k|_{X \cap U} = f_k|_{X \cap U}} \sup_{(x,y) \in U} \left\{ \left| \frac{\partial g_k}{\partial x}(x,y) \right| + \left| \frac{\partial g_k}{\partial y}(x,y) \right| \right\}.$$

Thus, $e^{-1} \leq ||f_k||_{1,X}^U$ for all k. Also, observe that we always have

$$||f_k||_{0,X}^U = \sup_{(x,y)\in X\cap U} |f_k(x,y)|,$$

and, as a result, for all k

$$||f_k||_{0,X}^U = \sup_{(x,y)\in X\cap U} |f_k(x,y)| = \sup_{(x,y)\in X\cap U} |y\varphi(1-kx)| = \sup_{0\leqslant x<1/k} |x^{\frac{p}{q}}\varphi(1-kx)|,$$

since for any $x \ge 1/k$ we have $\varphi(1 - kx) = 0$. Furthermore

$$\sup_{0\leqslant x<1/k}|x^{\frac{p}{q}}\varphi(1-kx)|\leqslant \sup_{0\leqslant x<1/k}|x^{\frac{p}{q}}|\sup_{0\leqslant x<1/k}|\varphi(1-kx)|\leqslant k^{-\frac{p}{q}}e^{-1}.$$

To estimate $||f_k||_{m,X}^U$, we take the extension of $f_k|_{X\cap U}$ from $X\cap U$ to U, namely, f_k itself. Then

$$||f_k||_{m,X}^U \leqslant |f_k|_m^U \leqslant C_m k^m$$

for a certain $C_m > 0$, as follows from the definition of f_k . The inequalities obtained above imply that for all k and m,

$$e^{-1} \le C_0 e^{-1} C(C_1)^m k^{-\frac{p}{q}(1-\frac{s}{m})} k^{m\frac{s}{m}}$$

so fixing m and taking $k \to \infty$, we obtain that

$$-\frac{p}{q}\left(1-\frac{s}{m}\right)+s\geqslant 0.$$

Thus, $s \ge \frac{p}{q}$; otherwise taking m sufficiently large and then letting $k \to \infty$, we arrive at a contradiction $e^{-1} \le 0$.

(2) In the case when p is even, X is symmetric with respect to y-axis, and we consider the family of functions $f_k(x,y) = y\varphi(1-kx)\varphi(1+kx)$. We have

$$||f_k||_{0,X}^U = \sup_{(x,y)\in X\cap U} |f_k(x,y)| = \sup_{(x,y)\in X\cap U} |y\varphi(1-kx)\varphi(1+kx)|$$

$$= \sup_{-1/k \leqslant x < 1/k} |x^{\frac{p}{q}}\varphi(1-kx)\varphi(1+kx)|$$

$$\leqslant \sup_{-1/k \leqslant x < 1/k} x^{\frac{p}{q}} \sup_{-1/k \leqslant x < 1/k} |\varphi(1-kx)\varphi(1+kx)|$$

$$\leqslant k^{-\frac{p}{q}} e^{-1/2} e^{-1/2} = k^{-\frac{p}{q}} e^{-1}.$$

The proof of the inequality $e^{-2} \leq \|f_k\|_{1,X}^U$, $k \in \mathbb{N}$, is analogous to the proof of (3.1). Similarly, we can show that $\|f_k\|_{m,X}^U \leq |f_k|_m^U \leq C_m' k^m$ for a certain C_m' for all $k \in \mathbb{N}$. This gives us the required result.

In the complex analytic case (changing our definition of norm (1.1)), we have

$$\gamma = (\gamma_1, \dots, \gamma_n) \in \mathbb{Z}^n, \quad |\gamma| = \sum_{j=1}^n |\gamma_j|, \quad D^{\gamma} = \frac{\partial^{\gamma_1}}{\partial^{\gamma_1} x_1} \dots \frac{\partial^{\gamma_n}}{\partial^{\gamma_n} x_n},
\frac{\partial^{\gamma_j}}{\partial^{\gamma_j} x_j} := \frac{\partial^{\gamma_j}}{\partial^{\gamma_j} \operatorname{Re}(x_j)} \text{ if } \gamma_j > 0, \quad \frac{\partial^{\gamma_j}}{\partial^{\gamma_j} x_j} := \frac{\partial^{|\gamma_j|}}{\partial^{|\gamma_j|} \operatorname{Im}(x_j)} \text{ if } \gamma_j < 0,
|f|_m^N := \sum_{|\gamma| \leqslant m} |D^{\gamma} f|^N,$$

which gives us complex analogs of the norms (1.2) and (2.1). Our set $X \subset \mathbb{C}^n$ can be viewed as a real analytic set embedded in \mathbb{R}^{2n} . The algebras $\mathbb{C}^{\infty}(U)$ and $\mathbb{C}^{\infty}(\bar{U})$, where U is a relatively compact domain, remain the same regardless of whether we consider U as a subdomain of \mathbb{C}^n or \mathbb{R}^{2n} , so Propositions 1 and 3 remain valid.

EXAMPLE 2. Let $X = \{(x,y) \in \mathbb{C}^2 : y^q = x^p\}$, where $\frac{p}{q} > 1$. Let us show that X does not admit a Gagliardo-Nirenberg inequality at 0 with any exponent smaller than $s = \frac{p}{q}$. We consider the family of functions

$$f_k(x,y) = \begin{cases} ye^{-\frac{1}{1-k^2x\bar{x}}} & |x| \leqslant \frac{1}{k}, \\ 0 & |x| > \frac{1}{k}. \end{cases}$$

Let $U=\{(x,y)\in\mathbb{C}^2:|x|^2+|y|^2\leqslant 1\}$. First, let q be even. We have $\mathrm{Re}(y)^q=\mathrm{Re}(x)^p$ for any $(x,y)\in X$. Then the same argument as in Example 1 gives us that

$$e^{-1} = \left| \frac{\partial f_k}{\partial \operatorname{Re}(u)}(0,0) \right| \leqslant ||f_k||_{1,X}^U.$$

Similarly,

$$||f_k||_{0,X}^U \leqslant k^{-\frac{p}{q}} e^{-1}, \quad ||f_k||_{m,X}^U \leqslant |f_k|_m^U \leqslant C_m'' k^m$$

for certain $C_m'' > 0$ for all k. The argument used in Example 1 gives us the required inequality $s \geqslant \frac{p}{q}$.

Let q be odd. The estimates for $||f_k||_{0,X}^U$ and $||f_k||_{m,X}^U$ remain the same. Let us show that

(3.2)
$$\left| \frac{\partial g_k(0,0)}{\partial \operatorname{Im}(y)} \right| = e^{-1}$$

for any extension g_k of f_k from $X \cap U$ to U, so that $||f_k||_{1,X}^U \geqslant e^{-1}$. Then an argument identical to the one used in Example 1 will give us $s \geqslant \frac{p}{q}$. Let $x = re^{i\theta}$. Denote

$$y_1 = e^{\frac{2\pi i}{q}} r^{\frac{p}{q}} e^{i\frac{p}{q}\theta}, \quad y_2 = e^{-\frac{2\pi i}{q}} r^{\frac{p}{q}} e^{i\frac{p}{q}\theta}.$$

Then $(x, y_1) \in X$, $(x, y_2) \in X$ for any value of θ , so we can put $\theta = 0$. We have

$$\frac{\partial g_k(0,0)}{\partial \operatorname{Im}(y)} = \lim_{r \to 0+} \frac{f_k(re^{i\theta}, r^{\frac{p}{q}}e^{\frac{2\pi i}{q}}e^{i\frac{p}{q}}) - f_k(re^{i\theta}, r^{\frac{p}{q}}e^{-\frac{2\pi i}{q}}e^{i\frac{p}{q}})}{r^{\frac{p}{q}}e^{i\frac{p}{q}}\theta(e^{\frac{2\pi i}{q}} - e^{-\frac{2\pi i}{q}})}|_{\theta=0}$$

$$= \lim_{r \to 0} \frac{f_k(r, 0, r^{\frac{p}{q}}\cos(2\pi/q), r^{\frac{p}{q}}\sin(2\pi/q))}{-f_k(r, 0, r^{\frac{p}{q}}\cos(2\pi/q), -r^{\frac{p}{q}}\sin(2\pi/q))} = \frac{1}{e},$$

which gives us equality (3.2), as required.

4. Singularity exponent for Gagliardo-Nirenberg inequalities on an irreducible complex curve. It follows from the inequality $||f||_{m,X}^U/||f||_{0,X}^U \ge 1$ that if (1.3) holds for some exponent s, then it also holds for any larger exponent. Given an analytic set X and $x \in X$, we define

 $s_* = \inf\{s \ge 1 : X \text{ admits a Gagliardo-Nirenberg}$

inequality at x with exponent s $\}$.

The following is an open problem. Suppose that we are given an analytic set $X \subset \mathbb{C}^2$ whose germ at 0 is defined to be the zero set of irreducible power series

$$f(x,y) = y^d + \sum_{k=0}^{d-1} a_k(x)y^k,$$

where $a_k \in \mathbb{C}\{x\}$, $a_k(0) = 0$. According to Puiseaux's Theorem (see [3]), there exists $\varphi \in \mathbb{C}\{z\}$ such that

$$f(z^d, y) = \prod_{j=1}^d (y - \varphi(e^{i\frac{2\pi j}{d}}z)), \quad z, y \in \mathbb{C}.$$

QUESTION 1. Let $\varphi(z) = \sum_{k=1}^{\infty} b_k z^{n_k}, b_k \neq 0$, and

$$l_* := \min\{l : \gcd(n_1, \dots, n_l) = 1\}.$$

Is it true that $s_* = \frac{n_{l_*}}{d}$ at 0?

ACKNOWLEDGEMENTS. I would like to thank my advisor Pierre Milman for posing the problem and for his guidance throughout its solution. I also thank the referee for valuable suggestions.

References

- ${\bf 1.}\ \ {\rm J.\ Adamus,\ E.\ Bierstone\ and\ P.\ Milman,\ \it Uniform\ linear\ bound\ in\ \it Chevalley's\ lemma.}$ Canad. J. Math. 60 (2008), no. 4, 721-733.
- E. Bierstone and P. Milman, Semianalytic and subanalytic sets. Inst. Hautes Etudes Sci. Publ. Math. 67 (1988), 5–42.
- _, Arc-analytic functions. Invent. Math. 101 (1990), no. 2, 411–424.
- , Geometric and differential properties of subanalytic sets. Ann. of Math. 147
- (1998), no. 3, 731–785.

 5. L. Bos and P. Milman, Sobolev-Gagliardo-Nirenberg and Markov type inequalities on subanalytic domains. Geom. Funct. Anal. 5 (1995),no. 6, 853–923.

 $Department\ of\ Mathematics$ University of Toronto Toronto, Ontario M5S 2E4 $email: \ dkinz@math.toronto.edu$