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Abstract. Given an analytic set X and x ∈ X, we show that X

admits (in a relatively compact neighbourhood of x) a modified Gagliardo–
Nirenberg inequality, depending on a certain exponent s > 1 (s = 1 in case

of a manifold). The infimum of the set of all such s characterizes, in a
sense, the type of singularity at x.

Résumé. Etant donné un ensemble analytique X et x ∈ X, nous

montrons que X admet (dans un voisinage relativement compact de x)
une inégalité de Gagliardo–Nirenberg modifiée, en fonction d’un certain
exposant s > 1 (s = 1 dans le cas d’une variété). La borne inférieure de
l’ensemble de tous ces s caractérise, en un sens, le type de singularité en x.

The classical Gagliardo–Nirenberg inequality is valid for functions defined on
a compact domain in R

n having sufficiently “good” boundary. As was shown in
[5], in the case when the boundary of the domain has outward pointing cusps, a
Gagliardo–Nirenberg inequality holds but with a certain exponent s > 1 (s = 1
in the case of a boundary). In the present note we show the validity of Gagliardo–
Nirenberg inequalities (in quotient norms) for sufficiently “good” functions de-
fined on a real or complex analytic set, also with a certain exponent s > 1 (s = 1
in case of a manifold), and we give an example of an algebraic set with an iso-
lated singularity which does not admit a Gagliardo–Nirenberg inequality with
any exponent smaller than a certain value s > 1.

1. Introduction: Gagliardo–Nirenberg inequalities in the smooth

case. Consider first the case of a real analytic set. Let N be a relatively
compact open subset of R

n. Given f ∈ C∞(N̄) and m ∈ Z+ := N ∪ {0}, we
define

(1.1) |f |Nm :=
∑

|γ|6m

|Dγf |N ,

where γ = (γ1, . . . , γn) ⊂ Z
n
+, Dγ = ∂γ1

∂γ1x1

· · · ∂γn

∂γnxn
, and | · |N is the ordinary

sup-norm on N .
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Let X be a real analytic set in R
n (assumed to be the closure in R

n of the
set of its smooth points), x ∈ X. Given a relatively compact neighbourhood U
of x ∈ R

n and a function f ∈ C∞(Ū), we define its quotient-norm

(1.2) ‖f‖U
m,X := inf

(h=f)|U∩X

|h|Um,

where the infimum is taken over all h ∈ C∞(Ū) such that h = f on X ∩ U .
We will say that X admits a Gagliardo–Nirenberg inequality at x ∈ X with

exponent s > 1 if there exist a neighbourhood U of x ∈ R
n and constants Cm > 0

such that for all f ∈ C∞(Ū) (f 6≡ 0 on X ∩ U), all m and all 1 6 k < m/s we
have

(1.3)
‖f‖U

k,X

‖f‖U
0,X

6 C0C
k
m

(

‖f‖U
m,X

‖f‖U
0,X

)
sk
m

.

If s = 1, and the quotient norms in (1.3) are replaced with the ordinary
sup-norms on a relatively compact domain in R

n with smooth boundary, (1.3)
becomes the classical Gagliardo–Nirenberg inequality, see [5].

Proposition 1. Suppose that x is a regular point of X. Then X admits a
Gagliardo–Nirenberg inequality at x with exponent s = 1.

Proof. Let x = 0 ∈ X. There exists a relatively compact neighbourhood
U of 0 ∈ R

n such that X ∩U is an analytic manifold. Without loss of generality,
X∩U is a coordinate chart. There exists an analytic diffeomorphism ψ : U ′ 7→ U ,
where U ′ ⊂ R

n is relatively compact, such that ψ−1(X ∩ U) = U ′ ∩ R
p, p 6 n.

Let U ′
0 ⊂ U ′ be an open subset such that U ′

0 ∩ R
p has smooth boundary and

U0 := ψ(U ′
0) ∋ 0. Then the norms

‖ · ‖U0

m,X and ‖ψ∗ · ‖
U ′

0

m,ψ−1(X∩U0)

are equivalent, and

‖ψ∗f‖
U ′

0

m,ψ−1(X∩U0)
= |ψ∗f |

U ′

0

m,ψ−1(X∩U0)
,

since ψ∗f := f ◦ ψ can be extended from ψ−1(X ∩ U) to U ′ as being constant
with respect to the new variables. Since ψ−1(X ∩U) has smooth boundary and
is relatively compact, it admits a classical Gagliardo–Nirenberg inequality with
exponent s = 1. That is, there exist Cm > 0 such that

|ψ∗f |k,ψ−1(X∩U)

|ψ∗f |0,ψ−1(X∩U)

6 C0C
k
m

( |ψ∗f |m,ψ−1(X∩U)

|ψ∗f |0,ψ−1(X∩U)

)
k
m

for all m and all 1 6 k < m. This implies the required result. ¤
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2. Gagliardo–Nirenberg inequalities near singular points. Let us
turn to the case when x ∈ X can be a singular point.

Let M be a smooth manifold and N be a relatively compact open subset of
M . There exist finitely many coordinate charts Si on M with coordinate maps
ηi : Si 7→ R

l (l = dim(M)) which cover N . Furthermore, we can find finitely
many relatively compact open subsets Tj ⊂ M such that Tj ⋐ Si for certain
i = i(j) (in what follows, let us fix some choice of i), and N ⊂

⋃

j Tj . Given

f ∈ C∞(N̄), define

(2.1) |f |Nm = max
j

|η∗
i f |

η−1

i
(Tj∩N)

m < ∞,

where η−1
i (Tj ∩ N) is, evidently, relatively compact for each j and i = i(j), and

the norms in the right-hand side of (2.1) are defined by (1.1).
The norm defined by (2.1) is determined by our choice of Si, ηi, Tj and

i = i(j). Nevertheless, it is easy to see that any two of such norms are equiva-
lent. The following estimate follows straightforwardly from [4, pp. 774–775] and
[1, p. 2].

Proposition 2 ([1], [4]). Let X ⊂ R
n be an analytic set with 0 ∈ X, and let

U ⊂ R
n be a relatively compact neighbourhood of 0 ∈ R

n. Let M be an analytic
manifold and let ϕ : M 7→ R

n be a proper analytic map such that ϕ(M) = X.
Then there exists a constant c ∈ N such that for all f ∈ C∞(Ū) we have

‖f‖U
k,X 6 C|ϕ∗f |

ψ−1(X∩U)
ck

for some fixed C > 0 for all k > 1.

Proposition 3. Given an analytic set X, it admits a Gagliardo–Nirenberg
inequality at any of its points x (with a certain exponent s = s(x) > 1).

Proof. Without loss of generality, 0 ∈ X, and we show that X admits a
Gagliardo–Nirenberg inequality at 0 with certain exponent s > 1. Let U = {x ∈
R

n : bε(x) < 0}, where bε =
∑n

k=1 x2
k − ε, be an open ball of sufficiently small

radius ε > 0 centered at 0. There exists an analytic manifold M with dimM =
dim X and a proper analytic function ϕ : M 7→ R

n such that ϕ(M) = X (see
[2]). Define N = ϕ−1(X ∩ U). Then N is a relatively compact subset of M .

First, we show that the sets Tj in the definition of the norm (2.1) can be
chosen in such a way that η−1

i (Tj ∩N) is a relatively compact and semianalytic
subset of R

l (l = dimM = dim X). Let ι be an (analytic) embedding of M in
R

q for some q. Define

Tj := ι−1
(

ι(M) ∩ B(xj , εj)
)

,

a relatively compact subset of M , where B(xj , εj) ⊂ R
q is the open ball of radius

εj > 0 centered at xj ∈ ι(M), and εj > 0 and xj are chosen in such a way that
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the remaining conditions on Tj in (2.1) are satisfied. We have

η−1
i (Tj) = {x ∈ R

l : (η∗
i ι∗bεj

)(x) < 0},

where η∗
i ι∗bεj

is an analytic function, and by definition, η−1
i (Tj) is semianalytic.

Now since ηi is a diffeomorphism, η−1
i (Tj ∩ N) = η−1

i (Tj) ∩ η−1
i (N), where

η−1
i (N) = {x ∈ R

l : (η∗
i ϕ∗b′c)(x) < 0}, b′c(y) =

n
∑

k=1

y2
k − c,

and η∗
i ϕ∗b′c is an analytic function. Thus, η−1

i (N) is also semianalytic, and
η−1

i (Tj) ∩ η−1
i (N) is semianalytic as well.

Secondly, we show that there exist ŝ > 1 and Ĉm > 0 such that, given any
f ∈ C∞(N̄), we have for all m and all 1 6 k < m/ŝ

(2.2)
|ϕ∗f |Nk
|ϕ∗f |N0

6 Ĉ0Ĉ
k
m

(

|ϕ∗f |Nm
|ϕ∗f |N0

)

.

Indeed, since η−1
i (Tj ∩ N) are semianalytic and relatively compact, we have,

according to [5], that there exist ŝj > 1 and Ĉmj > 0 such that for all m and all
1 6 k < m/ŝj

|η∗
i ϕ∗f |

η−1

i
(Tj∩N)

k

|η∗
i ϕ∗f |

η−1

i
(Tj∩N)

0

6 Ĉ0jĈ
k
mj

(

|η∗
i ϕ∗f |

η−1

i
(Tj∩N)

m

|η∗
i ϕ∗f |

η−1

i
(Tj∩N)

0

)

.

Let ŝ = maxj ŝj , Ĉm = maxj Ĉmj . Taking into account that

max
j

|η∗
i ϕ∗f |

η−1

i
(Tj∩N)

0 = |ϕ∗f |N0 ,

we obtain, by definition of the norm (2.1), the required inequality. According to
Proposition 2 there exists c ∈ N such that for all f ∈ C∞(Ū) we have

(2.3) ‖f‖U
k,X 6 C|ϕ∗f |Nck

for some fixed C > 0 for all k > 1. Along with that, it follows from the definition
of the norm (2.1) and the fact that the sets η−1

i (Tj ∩N) are relatively compact,
that there exists B > 0 such that

(2.4) |ϕ∗h|Nm 6 B|h|Um

for any h ∈ C∞(Ū). Since, given any h ∈ C∞(Ū) such that h|X = f |X , we have
|ϕ∗h|Nm = |ϕ∗f |Nm, we can take the infimum in (2.4) over all such h to get

(2.5) |ϕ∗f |Nm 6 B‖f‖U
m,X .
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Next, as follows from the estimates (2.2), (2.3) and (2.5),

‖f‖U
k,X

‖f‖U
0,X

6 CĈ0Ĉ
ck
m B

ŝck
m

(

‖f‖U
m,X

‖f‖U
0,X

)
ŝck
m

.

for all m and all 1 6 k 6 m
ŝc . To complete our proof we put C0 := CĈ0,

Cm := Ĉc
mB

ŝc
m (m > 1) and s := ŝc. ¤

Let us note that the proof of Proposition 3 actually provides an estimate for s.

3. Examples

Example 1. Let X = {(x, y) ∈ R
2 : yq = xp}, where q is even and p

q > 1.
Let us show that X does not admit a Gagliardo–Nirenberg inequality at 0

with any exponent smaller than s = p
q . We employ, with slight modification, the

family of functions that was used in [5] for the proof of an analogous statement
for a compact domain in R

n.

(1) Suppose first that p is odd. Consider on U = {(x, y) ∈ R
2 : x2 + y2 6 1}

the family of functions fk(x, y) = yϕ(1 − kx), where

ϕ(x) =

{

e−1/x x > 0,

0 x 6 0.

Note that for each k

e−1 =
∣

∣

∣

∂fk

∂y
(0, 0)

∣

∣

∣
6 inf

gk|X∩U=fk|X∩U

sup
(x,y)∈U

{∣

∣

∣

∂gk

∂x
(x, y)

∣

∣

∣
+

∣

∣

∣

∂gk

∂y
(x, y)

∣

∣

∣

}

6 ‖fk‖
U
1,X .

(3.1)

The last inequality follows straightforwardly from the definition of the quotient
norm. The first inequality holds due to the following two facts:

(a) given any gk ∈ C∞(U) such that gk|X∩U = fk|X∩U we have that ∇gk(0, 0) =
∇fk(0, 0), since for every k

∂gk

∂x
(0, 0) = lim

x→0+

fk(x, x
p
q ) − fk(0, 0)

x

= lim
x→0+

∂fk

∂x (0, 0)x + ∂fk

∂y (0, 0)x
p
q − o(|x|)

x
=

∂fk

∂x
(0, 0),

and, similarly,

∂gk

∂y
(0, 0) = lim

x→0+

fk(x, x
p
q ) − fk(x,−x

p
q )

2x
p
q

=
∂fk

∂y
(0, 0),
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(b) for any such g we have
∣

∣

∣

∂fk

∂y
(0, 0)

∣

∣

∣
=

∣

∣

∣

∂gk

∂y
(0, 0)

∣

∣

∣
6

∣

∣

∣

∂gk

∂x
(0, 0)

∣

∣

∣
+

∣

∣

∣

∂gk

∂y
(0, 0)

∣

∣

∣

6 sup
(x,y)∈U

{∣

∣

∣

∂gk

∂x
(x, y)

∣

∣

∣
+

∣

∣

∣

∂gk

∂y
(x, y)

∣

∣

∣

}

,

so
∣

∣

∣

∂fk(0, 0)

∂y

∣

∣

∣
6 inf

gk|X∩U=fk|X∩U

sup
(x,y)∈U

{∣

∣

∣

∂gk

∂x
(x, y)

∣

∣

∣
+

∣

∣

∣

∂gk

∂y
(x, y)

∣

∣

∣

}

.

Thus, e−1 6 ‖fk‖
U
1,X for all k. Also, observe that we always have

‖fk‖
U
0,X = sup

(x,y)∈X∩U

|fk(x, y)|,

and, as a result, for all k

‖fk‖
U
0,X = sup

(x,y)∈X∩U

|fk(x, y)| = sup
(x,y)∈X∩U

|yϕ(1−kx)| = sup
06x<1/k

|x
p
q ϕ(1−kx)|,

since for any x > 1/k we have ϕ(1 − kx) = 0. Furthermore,

sup
06x<1/k

|x
p
q ϕ(1 − kx)| 6 sup

06x<1/k

|x
p
q | sup

06x<1/k

|ϕ(1 − kx)| 6 k− p
q e−1.

To estimate ‖fk‖
U
m,X , we take the extension of fk|X∩U from X∩U to U , namely,

fk itself. Then
‖fk‖

U
m,X 6 |fk|

U
m 6 Cmkm

for a certain Cm > 0, as follows from the definition of fk. The inequalities
obtained above imply that for all k and m,

e−1
6 C0e

−1C(C1)
mk− p

q
(1− s

m
)km s

m ,

so fixing m and taking k → ∞, we obtain that

−
p

q

(

1 −
s

m

)

+ s > 0.

Thus, s >
p
q ; otherwise taking m sufficiently large and then letting k → ∞, we

arrive at a contradiction e−1 6 0.

(2) In the case when p is even, X is symmetric with respect to y-axis, and we
consider the family of functions fk(x, y) = yϕ(1 − kx)ϕ(1 + kx). We have

‖fk‖
U
0,X = sup

(x,y)∈X∩U

|fk(x, y)| = sup
(x,y)∈X∩U

|yϕ(1 − kx)ϕ(1 + kx)|

= sup
−1/k6x<1/k

|x
p
q ϕ(1 − kx)ϕ(1 + kx)|

6 sup
−1/k6x<1/k

x
p
q sup
−1/k6x<1/k

|ϕ(1 − kx)ϕ(1 + kx)|

6 k− p
q e−1/2e−1/2 = k− p

q e−1.
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The proof of the inequality e−2 6 ‖fk‖
U
1,X , k ∈ N, is analogous to the proof

of (3.1). Similarly, we can show that ‖fk‖
U
m,X 6 |fk|

U
m 6 C ′

mkm for a certain C ′
m

for all k ∈ N. This gives us the required result.

In the complex analytic case (changing our definition of norm (1.1)), we have

γ = (γ1, . . . , γn) ∈ Z
n, |γ| =

n
∑

j=1

|γj |, Dγ =
∂γ1

∂γ1x1
. . .

∂γn

∂γnxn
,

∂γj

∂γj xj
:=

∂γj

∂γj Re(xj)
if γj > 0,

∂γj

∂γj xj
:=

∂|γj |

∂|γj | Im(xj)
if γj < 0,

|f |Nm :=
∑

|γ|6m

|Dγf |N ,

which gives us complex analogs of the norms (1.2) and (2.1). Our set X ⊂ C
n

can be viewed as a real analytic set embedded in R
2n. The algebras C

∞(U) and
C

∞(Ū), where U is a relatively compact domain, remain the same regardless of
whether we consider U as a subdomain of C

n or R
2n, so Propositions 1 and 3

remain valid.

Example 2. Let X = {(x, y) ∈ C
2 : yq = xp}, where p

q > 1. Let us show
that X does not admit a Gagliardo–Nirenberg inequality at 0 with any exponent
smaller than s = p

q . We consider the family of functions

fk(x, y) =

{

ye
− 1

1−k2xx̄ |x| 6 1
k ,

0 |x| > 1
k .

Let U = {(x, y) ∈ C
2 : |x|2 + |y|2 6 1}. First, let q be even. We have Re(y)q =

Re(x)p for any (x, y) ∈ X. Then the same argument as in Example 1 gives us
that

e−1 =
∣

∣

∣

∂fk

∂ Re(y)
(0, 0)

∣

∣

∣
6 ‖fk‖

U
1,X .

Similarly,

‖fk‖
U
0,X 6 k− p

q e−1, ‖fk‖
U
m,X 6 |fk|

U
m 6 C ′′

mkm

for certain C ′′
m > 0 for all k. The argument used in Example 1 gives us the

required inequality s >
p
q .

Let q be odd. The estimates for ‖fk‖
U
0,X and ‖fk‖

U
m,X remain the same. Let

us show that

(3.2)
∣

∣

∣

∂gk(0, 0)

∂ Im(y)

∣

∣

∣
= e−1



104 D. KINZEBULATOV

for any extension gk of fk from X ∩ U to U , so that ‖fk‖
U
1,X > e−1. Then an

argument identical to the one used in Example 1 will give us s >
p
q . Let x = reiθ.

Denote
y1 = e

2πi
q r

p
q ei p

q
θ, y2 = e−

2πi
q r

p
q ei p

q
θ.

Then (x, y1) ∈ X, (x, y2) ∈ X for any value of θ, so we can put θ = 0. We have

∂gk(0, 0)

∂ Im(y)
= lim

r→0+

fk(reiθ, r
p
q e

2πi
q ei p

q
θ) − fk(reiθ, r

p
q e−

2πi
q ei p

q
θ)

r
p
q ei p

q
θ(e

2πi
q − e−

2πi
q )

|θ=0

= lim
r→0

fk

(

r, 0, r
p
q cos(2π/q), r

p
q sin(2π/q)

)

− fk

(

r, 0, r
p
q cos(2π/q),−r

p
q sin(2π/q)

)

2r
p
q sin(2π/q)

=
1

e
,

which gives us equality (3.2), as required.

4. Singularity exponent for Gagliardo–Nirenberg inequalities on an

irreducible complex curve. It follows from the inequality ‖f‖U
m,X/‖f‖U

0,X >

1 that if (1.3) holds for some exponent s, then it also holds for any larger expo-
nent. Given an analytic set X and x ∈ X, we define

s∗ = inf
{

s > 1 : X admits a Gagliardo–Nirenberg

inequality at x with exponent s
}

.

The following is an open problem. Suppose that we are given an analytic set
X ⊂ C

2 whose germ at 0 is defined to be the zero set of irreducible power series

f(x, y) = yd +
d−1
∑

k=0

ak(x)yk,

where ak ∈ C{x}, ak(0) = 0. According to Puiseaux’s Theorem (see [3]), there
exists ϕ ∈ C{z} such that

f(zd, y) =
d
∏

j=1

(

y − ϕ(ei 2πj
d z)

)

, z, y ∈ C.

Question 1. Let ϕ(z) =
∑∞

k=1 bkznk , bk 6= 0, and

l∗ := min{l : gcd(n1, . . . , nl) = 1}.

Is it true that s∗ =
nl∗

d at 0?
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