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HYPERGROUPS WITH UNIQUE α-MEANS
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Abstract. Let K be a commutative hypergroup and α ∈ bK. We
show that K is α-amenable with the unique α-mean mα if and only if

mα ∈ L
1(K) ∩ L

2(K) and α is isolated in bK. In contrast to the case
of amenable noncompact locally compact groups, examples of polynomial
hypergroups with unique α-means (α 6= 1) are given. Further examples
emphasize that the α-amenability of hypergroups depends heavily on the

asymptotic behavior of Haar measures and characters.

Résumé. Soit K un hypergroupe commutatif et α ∈ bK. Nous mon-

trons que K est α-moyennable avec unicité de l’α-moyenne mα si et seule-
ment si mα ∈ L

1(K) ∩ L
2(K) et α est isolé dans bK. Contrairement au

cas des groupes moyennables localement compacts mais non compacts,

des exemples d’hyper-groupes polynomiaux avec unicité des α-moyennes
(α 6= 1) sont donnés. Nous montrons à l’aide d’autres examples que
l’α-moyennabilité des hypergroupes dépend fortement de leurs mesures de
Haar ainsi que du comportement des caractères.

1. Introduction. Recently the notion of α-amenable hypergroups was in-
troduced and studied in [8]. Let K be a commutative locally compact hyper-

group and let L1(K) denote the hypergroup algebra. Assume that α ∈ K̂ and
denote by I(α) the maximal ideal in L1(K) generated by α. As shown in [8],
K is α-amenable if and only if either I(α) has a b.a.i. (bounded approximate
identity) or K satisfies the modified Reiter’s condition of P1-type in α. Com-
mutative hypergroups are always 1-amenable [14], whereas a large class of non
α-amenable hypergroups, α 6= 1, are given in [1], [8]. It is worthwhile to mention
that 1 ∈ supp πK does not hold in general, where supp πK denotes the support
of the Plancherel measure on K̂ [10], [14].

As in the case of locally compact groups [13], if K is a noncompact locally

compact amenable hypergroup, then the cardinality of (1-)means is 22
d

, where
d is the smallest cardinality of a cover of K by compact sets [14]. However, it is
well known that K has a unique (1-)mean if and only if K is compact [13], [14].

Hence, supp πK = K̂ and K is α-amenable for every α ∈ K̂ [2], [8].
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For a α-amenable hypergroup K with a unique α-mean, one can pose the
natural question of whether K is compact or K is β-amenable when α 6= β ∈
K̂. Theorem 3.1 answers this question completely. In addition, examples of
polynomial hypergroups show that the α-amenability of hypergroups depends
on the asymptotic behavior of the Haar measures and characters. Furthermore,
the α-amenability of K with a unique α-mean (α 6= 1), even in every α ∈ K̂\{1},
does not imply the compactness of K; see Section 4.

Different axioms for hypergroups are given in [7], [10], [15]. However, in this
paper we refer to Jewett’s axioms in [10].

2. Preliminaries. Let (K,ω,∼) be a locally compact hypergroup, where
ω : K × K → M1(K) defined by (x, y) 7→ ω(x, y), and ∼ : K → K defined by
x 7→ x̃, denote the convolution and involution on K, where M1(K) stands for the
set of all probability measures on K. The hypergroup K is called commutative
if ω(x, y) = ω(y, x) for every x, y ∈ K.

Throughout this paper K is a commutative hypergroup. Let Cc(K) be the
spaces of all continuous functions on K with compact support. The translation
of f ∈ Cc(K) at the point x ∈ K, Txf , is defined by

Txf(y) :=

∫

K

f(t) dω(x, y)(t), for every y ∈ K.

Commutativity of K ensures the existence of a Haar measure m on K which
is unique up to a multiplicative constant [15]. Let

(
Lp(K), ‖ · ‖p

)
(p = 1, 2)

denote the usual Banach space of Borel measurable functions on K [10, 6.2].
For f, g ∈ L1(K) we may define the convolution and involution by f ∗ g(x) :=∫

K
f(y)Tỹg(x) dm(y) (m-a.e. on K) and f∗(x) = f(x̃), respectively, that(

L1(K), ‖ · ‖1

)
becomes a Banach ∗-algebra. If K is discrete, then L1(K) has an

identity element. Otherwise L1(K) has a b.a.i., i.e., there exists a net {ei}i of
functions in L1(K) with ‖ei‖1 ≤ M , for some M > 0, such that ‖f ∗ei−f‖1 → 0
as i → ∞ [2]. The set of all multiplicative linear functionals on L1(K), i.e., the
maximal ideal space of L1(K) [3], can be identified with

X
b(K) := {α ∈ Cb(K) : α 6= 0, ω(x, y)(α) = α(x)α(y),∀x, y ∈ K}

via ϕα(f) :=
∫

K
f(x)α(x) dm(x), for every f ∈ L1(K). X

b(K) is a locally

compact Hausdorff space with the compact-open topology [2]. X
b(K) and its

subset
K̂ := {α ∈ X

b(K) : α(x̃) = α(x),∀x ∈ K}
are considered as the character spaces of K. The maximal ideal in L1(K) gen-
erated by the character α is I(α) := {f ∈ L1(K) : ϕα(f) = 0}. The Fourier

transform of f ∈ L1(K), f̂ ∈ C0(K̂), is f̂(α) := ϕα(f) for every α ∈ K̂. There
exists a unique (up to a multiplicative constant) regular positive Borel measure

πK on K̂ with supp πK = S such that
∫

K
|f(x)|2 dm(x) =

∫
S
|f̂(α)|2 dπK(α) for
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all f ∈ L1(K) ∩ L2(K) [2]. The extension of the Fourier transform defined on

L1(K)∩L2(K) to all of L2(K) onto L2(K̂) is the Plancherel transform which is

an isometric isomorphism. Observe that S is a nonvoid closed subset of K̂, and
the constant function 1 is in general not contained in S [10, 9.5].

The inverse Fourier transform for ϕ ∈ L1(K̂) is given by

ϕ̌(x) =

∫

S

ϕ(α)α(x) dπK(α)

for every x ∈ K. Then ϕ̌ ∈ C0(K) and if ϕ̌ ∈ L1(K) then ̂̌ϕ = ϕ [2].

Let L1(K)∗ and L1(K)∗∗ denote the dual and the bidual spaces of L1(K)
respectively. As usual, L1(K)∗ can be identified with the space L∞(K) of es-
sentially bounded Borel measurable complex-valued functions on K. We may
define the Arens product on L1(K)∗∗ as follows:

〈m · m′, f〉 = 〈m,m′ · f〉

in which 〈m′ ·f, g〉 = 〈m′, f · g〉 and 〈f · g, h〉 = 〈f, g ∗h〉 for all m,m′ ∈ L1(K)∗∗,
f ∈ L∞(K) and g, h ∈ L1(K). Then L1(K)∗∗ with the Arens product is a
noncommutative Banach algebra in general [3], [5]. From the definitions of the
Arens product and the convolution, we may have g · f = g∗ ∗ f and m · (f · g) =
(m · f) · g.

Definition 2.1. Let K be a commutative hypergroup and α ∈ K̂. K is
called α-amenable if there exists a bounded linear functional mα on L∞(K) with
the following properties:

(i) mα(α) = 1,
(ii) mα(δx̃ ∗ f) = α(x)mα(f), for every f ∈ L∞(K) and x ∈ K.

For example, if K is compact or L1(K) is amenable, then K is α-amenable,

for every α ∈ K̂ [8], [14].

3. Main theorem.

Theorem 3.1. Let K be a hypergroup and α ∈ K̂. Suppose K is α-

amenable with the unique α-mean mα. Then the following hold.

(i) mα and α belong to L1(K) ∩ L2(K) and α ∈ S is isolated. Further,

m2
α = mα.

(ii) mα = π(α)/‖α‖2
2, where π : L1(K) → L1(K)∗∗ is the canonical embedding.

(iii) If α is positive, then α = 1, hence K is compact.

Proof. (i) Since K is α-amenable with the unique α-mean mα, mα(α) = 1,
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and f · g = g · f , we have

〈mα, f · g〉 = 〈mα, g∗ ∗ f〉

=

〈
mα,

∫

K

(δx ∗ f)g∗(x)dm(x)

〉

=

∫

K

〈mα, δx ∗ f〉g∗(x) dm(x)

= ĝ∗(α)〈mα, f〉,

for every f ∈ L∞(K) and g ∈ L1(K). Moreover, if n ∈ L1(K)∗∗ and h ∈ L1(K),
then

〈mα · n, f · g〉 = 〈mα, n · (f · g)〉 = 〈mα, (n · f) · g〉

= ĝ∗(α)〈mα, n · f〉 = ĝ∗(α)〈mα · n, f〉.

Since the α-mean mα is unique and the associated functional to α on L1(K)∗∗

is multiplicative [5], mα · n = λn · mα, where λn = 〈n, α〉. Let (ni) be a net in
L1(K)∗∗ converging to n in the w∗-topology. Then the convergence λni

→ λn, as
i → ∞, implies that the mapping n → mα · n is w∗-w∗ continuous on L1(K)∗∗,
hence mα is in L1(K), the topological centre of L1(K)∗∗ [11]. In that m̂α(α) = 1,
g · mα = ĝ∗(α)mα for every g ∈ L1(K), and the Arens product is continuous in
the first variable, then m2

α = mα.

Let β ∈ K̂. The equality β(x)mα(β) = mα(Txβ) = α(x)mα(β), for all

x ∈ K, implies that mα(β) = δα(β). Since m̂α ∈ C0(K̂), α is isolated in K̂ and

m̂α ∈ L1(K̂). The inverse of Fourier theorem yields mα = m̂α
∨, hence α ∈ S.

Moreover, since the Plancherel transform is an isometric isomorphism of L2(K)

onto L2(K̂) and m̂α(β) = δβ(α), mα ∈ L2(K).
(ii) Plainly δx · mα = α(x)mα, for every x ∈ K, so it follows from part (i)

that α ∈ L1(K) ∩ L2(K). Let nα = π(α)/‖α‖2
2. We shall prove mα = nα. Ap-

parently 〈nα, α〉 = 1, and for every x ∈ K and f ∈ L∞(K) we have 〈nα, Txf〉 =
α(x)〈nα, f〉, hence nα is a α-mean on L∞(K). Since mα ∈ L1(K)∗∗, there exists

(mi)i a net of functions in L1(K) such that π(mj)
w∗

−→ mα, Goldstein’s theo-
rem [6]. Moreover, mj · α = α · mj = m̂j(α)α and mα(α) = 1, so taking the
w∗-limit yields mα · π(α) = π(α). Therefore, for every f ∈ L∞(K) and x ∈ K
we have

‖α‖2
2〈nα, f〉 = 〈π(α), f〉 = 〈mα · π(α), f〉

= 〈mα, π(α) · f〉 = 〈mα, α · f〉 = ‖α‖2
2〈mα, f〉,

hence mα = nα.
(iii) By (i), since α ∈ L1(K) ∩ L2(K), we have

α(x)

∫

K

α(y) dm(y) =

∫

K

Txα(y) dm(y) =

∫

K

α(y) dm(y),
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which implies that α(x) = 1 for every x ∈ K, hence K is compact [10]. ¤

Corollary 3.2. Let K be a α-amenable hypergroup with a unique α-mean

in all α ∈ K̂ \ {1}. Then 1 ∈ S.

Remark 3.3. We observe that part (iii) of Theorem 3.1 can also be derived
from part (i) and [16, Theorem 2.1].

4. Examples.

(I) Symmetric hypergroup [17]. For each n ∈ N, let bn ∈ ]0, 1], c0 = 1,
and define numbers cn inductively by cn = 1

bn

(c0 +c1 + · · ·+cn−1). A symmetric
hypergroup structure on N0 is defined by εn ∗ εm = εm ∗ εn = εn if 0 ≤ m < n
and

εn ∗ εn =
c0

cn
ε0 +

c1

cn
ε1 + · · · + cn−1

cn
εn + (1 − bn)εn.

N0 with the above convolution and an involution defined by the identity map is
a commutative hypergroup with X

b(N0) = S. Every nontrivial character α in

N̂0 has a finite support, so α ∈ ℓ1(N0) ∩ ℓ2(N0). Consequently by Theorem 3.1
we see that N0 is α-amenable with a unique α-mean if and only if α 6= 1.

(II) Let {pn}n∈N0
be a set of polynomials defined by a recursion relation

(∗) p1(x)pn(x) = anpn+1(x) + bnpn(x) + cnpn−1(x)

for n ∈ N and p0(x) = 1, p1(x) = 1

a0

(x − b0), where an > 0, bn ∈ R for all

n ∈ N0 and cn > 0 for n ∈ N. There exists a probability measure π ∈ M1(R)
such that

∫
R

pn(x)pm(x) dπ(x) = δn,mµm (µm > 0) [4]. Assume that pn(1) 6= 0,
so after renorming, for n ∈ N0 we have pn(1) = 1. The relation (∗) implies
that an + bn + cn = 1 and a0 + b0 = 1. The polynomial set {pn}n∈N0

induces a
hypergroup structure on N0, which is known as a polynomial hypergroup [2].

(i) Hypergroups of compact type [9]. If in the recursion formula (∗)
an, cn → 0 and bn → 1 as n → ∞, then the induced hypergroup N0 is called to be

of compact type. In this case, S = N̂0 = X
b(N0), 1 is the only accumulation point

of N̂0 and nontrivial characters of N0 belong to ℓ1(N0)∩ ℓ2(N0). By Theorem 3.1
we see that N0 is α-amenable with a unique α-mean if and only if α 6= 1. For
instance, the little q-Legendre polynomial hypergroup is of compact type.

(ii) Hypergroups of Nevai classes. Let {pn}n∈N0
define a hypergroup

structure on N0 with the relations (∗). Consider the orthonormal polynomials
qn(x) :=

√
h(n)pn(x), which by the recursion (∗) satisfy the following recursion

formula

xqn(x) = λn+1qn+1(x) + βnqn(x) + λnqn−1(x), ∀n ∈ N0,

where q0(x) = 1, λn = a0

√
cnan−1 for n ≥ 2, λ1 = a0

√
c1, λ0 = 0, and βn =

a0bn + b0 for n ≥ 1, with β0 = b0. The polynomial set (qn)n∈N0
is of the Nevai
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class M(0, 1) if lim
n→∞

λn = 1

2
and lim

n→∞
βn = 0. It has a bounded variation,

(qn)n∈N0
∈ BV , if

∞∑

n=1

(|λn+1 − λn| + |βn+1 − βn|) < ∞.

Theorem 4.1. Let (qn)n∈N0
∈ BV ∩M(0, 1) and αx ∈ N̂0, where αx(n) :=

qn(x) for n ∈ N0. Then the following hold:

(i) S ∼= [−1, 1]∪A, where A is a nonempty countable set and [−1, 1]∩A = ∅.

(ii) If x ∈ A, then N0 is αx-amenable with a unique αx-mean.

(iii) If h(n) is unbounded, then N0 is not αx-amenable for x ∈ (−1, 1).
(iv) If h(n) is bounded, then N0 is αx-amenable for x ∈ (−1, 1).

Proof. (i) This is shown in [12, Theorem 7].
(ii) Let S be as in part (i). If A ∩ ]1,∞[ 6= ∅, then x1 := supA ∈ A

corresponds to a positive character of N0 [4, Theorem 5.3]. But this contradicts
the fact that a positive character in S cannot be isolated [16, Theorem 2.1],
hence A ⊂ ]−∞,−1[. By [12, Theorem 18, p. 36] we have

lim
n→∞

h(n + 1)

h(n)

∣∣∣pn+1(x)

pn(x)

∣∣∣ = C lim
n→∞

∣∣∣pn+1(x)

pn(x)

∣∣∣ =
(
|x| + (x2 − 1)1/2

)−1
< 1,

whenever x ∈ A. This shows that αx belongs to ℓ1(N0). Hence, by Theorem 3.1,
N0 is αx-amenable with a unique αx-mean.

(iii) and (iv) are shown in [8, Theorems 4.10–11]. ¤

Remark 4.2.
(i) Theorem 4.1 reveals that the α-amenability of K in general depends on

the asymptotic behavior of the Haar measure and α.
(ii) Observe that in Theorem 4.1 (iii) if x ∈ (−1, 1) then the functionals mαx

are distinct.

Conjecture 4.3. Let K be a α-amenable hypergroup. Then K has either

a unique α-mean or the cardinality of the set of α-means is at most 22
d

, where

d is the smallest cardinality of a cover of K by compact sets.

References

1. A. Azimifard, α-Amenability of Banach algebras on commutative hypergroups. Ph.D.
thesis, Technical University of Munich, 2006.

2. W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hyper-
groups. De Gruyter, 1994.

3. F. Bonsall and J. Duncan, Complete Normed Algebras. Springer, Berlin, 1973.
4. T. S. Chihara, An Introduction to Orthogonal Polynomials. Gordon and Breach, 1978.
5. P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra.

Pacific J. Math. 11 (1961), 847–870.



HYPERGROUPS WITH UNIQUE α-MEANS 39

6. N. Dunford and J. T. Schwartz, Linear Operators I. Wiley & Sons, 1988.
7. C. F. Dunkl, The measure algebra of a locally compact hypergroup. Trans. Amer. Math.

Soc. 179 (1973), 331–348.
8. F. Filbir, R. Lasser and R. Szwarc, Reiter’s condition P1 and approximate identities

for hypergroups. Monatsh. Math. 143 (2004), 189–203.
9. , Hypergroups of compact type. J. Comput. Appl. Math. 178 (2005), 205–214.

10. R. I. Jewett, Spaces with an abstract convolution of measures. Adv. in Math. 18 (1975),
1–101.

11. G. R. A. Kamyabi, Topological center of dual Banach algebras associated to hyper-
groups. Ph.D. thesis, University of Alberta, 1997.

12. P. G. Nevai, Orthogonal Polynomials. Mem. Amer. Math. Soc., 1979.
13. A. L. T. Paterson, Amenability. Amer. Math. Soc., 1988.
14. M. Skantharajah, Amenable hypergroups. Illinois J. Math. 36 (1992), 15–46.
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