HYPERGROUPS WITH UNIQUE α -MEANS

AHMADREZA AZIMIFARD

Presented by George Elliott, FRSC

ABSTRACT. Let K be a commutative hypergroup and $\alpha \in \widehat{K}$. We show that K is α -amenable with the unique α -mean m_{α} if and only if $m_{\alpha} \in L^1(K) \cap L^2(K)$ and α is isolated in \widehat{K} . In contrast to the case of amenable noncompact locally compact groups, examples of polynomial hypergroups with unique α -means ($\alpha \neq 1$) are given. Further examples emphasize that the α -amenability of hypergroups depends heavily on the asymptotic behavior of Haar measures and characters.

RÉSUMÉ. Soit K un hypergroupe commutatif et $\alpha \in \widehat{K}$. Nous montrons que K est α -moyennable avec unicité de l' α -moyenne m_{α} si et seulement si $m_{\alpha} \in L^1(K) \cap L^2(K)$ et α est isolé dans \widehat{K} . Contrairement au cas des groupes moyennables localement compacts mais non compacts, des exemples d'hyper-groupes polynomiaux avec unicité des α -moyennes ($\alpha \neq 1$) sont donnés. Nous montrons à l'aide d'autres examples que l' α -moyennabilité des hypergroupes dépend fortement de leurs mesures de Haar ainsi que du comportement des caractères.

1. Introduction. Recently the notion of α -amenable hypergroups was introduced and studied in [8]. Let K be a commutative locally compact hypergroup and let $L^1(K)$ denote the hypergroup algebra. Assume that $\alpha \in \widehat{K}$ and denote by $I(\alpha)$ the maximal ideal in $L^1(K)$ generated by α . As shown in [8], K is α -amenable if and only if either $I(\alpha)$ has a b.a.i. (bounded approximate identity) or K satisfies the modified Reiter's condition of P_1 -type in α . Commutative hypergroups are always 1-amenable [14], whereas a large class of non α -amenable hypergroups, $\alpha \neq 1$, are given in [1], [8]. It is worthwhile to mention that $1 \in \text{supp } \pi_K$ does not hold in general, where supp π_K denotes the support of the Plancherel measure on \widehat{K} [10], [14].

As in the case of locally compact groups [13], if K is a noncompact locally compact amenable hypergroup, then the cardinality of (1-)means is 2^{2^d} , where d is the smallest cardinality of a cover of K by compact sets [14]. However, it is well known that K has a unique (1-)mean if and only if K is compact [13], [14]. Hence, supp $\pi_K = \widehat{K}$ and K is α -amenable for every $\alpha \in \widehat{K}$ [2], [8].

Received by the editors on August 18, 2007.

Parts of the paper are taken from the author's Ph.D. thesis at the Technical University of Munich

AMS Subject Classification: Primary: 43A62, 43A07; secondary: 46H20.

Keywords: orthogonal polynomial hypergroups, hypergroups of Nevaei classes, α -amenable hypergroups.

[©] Royal Society of Canada 2008.

For a α -amenable hypergroup K with a unique α -mean, one can pose the natural question of whether K is compact or K is β -amenable when $\alpha \neq \beta \in \widehat{K}$. Theorem 3.1 answers this question completely. In addition, examples of polynomial hypergroups show that the α -amenability of hypergroups depends on the asymptotic behavior of the Haar measures and characters. Furthermore, the α -amenability of K with a unique α -mean ($\alpha \neq 1$), even in every $\alpha \in \widehat{K} \setminus \{1\}$, does not imply the compactness of K; see Section 4.

Different axioms for hypergroups are given in [7], [10], [15]. However, in this paper we refer to Jewett's axioms in [10].

2. **Preliminaries.** Let (K, ω, \sim) be a locally compact hypergroup, where $\omega \colon K \times K \to M^1(K)$ defined by $(x,y) \mapsto \omega(x,y)$, and $\sim \colon K \to K$ defined by $x \mapsto \tilde{x}$, denote the convolution and involution on K, where $M^1(K)$ stands for the set of all probability measures on K. The hypergroup K is called commutative if $\omega(x,y) = \omega(y,x)$ for every $x,y \in K$.

Throughout this paper K is a commutative hypergroup. Let $C_c(K)$ be the spaces of all continuous functions on K with compact support. The translation of $f \in C_c(K)$ at the point $x \in K$, $T_x f$, is defined by

$$T_x f(y) := \int_K f(t) d\omega(x, y)(t), \text{ for every } y \in K.$$

Commutativity of K ensures the existence of a Haar measure m on K which is unique up to a multiplicative constant [15]. Let $\left(L^p(K), \|\cdot\|_p\right)$ (p=1,2) denote the usual Banach space of Borel measurable functions on K [10, 6.2]. For $f,g\in L^1(K)$ we may define the convolution and involution by $f*g(x):=\int_K f(y)T_{\bar{y}}g(x)\,dm(y)$ (m-a.e. on K) and $f^*(x)=\overline{f(\bar{x})}$, respectively, that $\left(L^1(K),\|\cdot\|_1\right)$ becomes a Banach *-algebra. If K is discrete, then $L^1(K)$ has an identity element. Otherwise $L^1(K)$ has a b.a.i., i.e., there exists a net $\{e_i\}_i$ of functions in $L^1(K)$ with $\|e_i\|_1 \leq M$, for some M>0, such that $\|f*e_i-f\|_1 \to 0$ as $i\to\infty$ [2]. The set of all multiplicative linear functionals on $L^1(K)$, i.e., the maximal ideal space of $L^1(K)$ [3], can be identified with

$$\mathfrak{X}^b(K) := \{\alpha \in C^b(K) : \alpha \neq 0, \omega(x,y)(\alpha) = \alpha(x)\alpha(y), \forall x,y \in K\}$$

via $\varphi_{\alpha}(f):=\int_K f(x)\overline{\alpha(x)}\,dm(x)$, for every $f\in L^1(K)$. $\mathfrak{X}^b(K)$ is a locally compact Hausdorff space with the compact-open topology [2]. $\mathfrak{X}^b(K)$ and its subset

$$\widehat{K} := \{ \alpha \in \mathfrak{X}^b(K) : \alpha(\widetilde{x}) = \overline{\alpha(x)}, \forall x \in K \}$$

are considered as the character spaces of K. The maximal ideal in $L^1(K)$ generated by the character α is $I(\alpha) := \{ f \in L^1(K) : \varphi_{\alpha}(f) = 0 \}$. The Fourier transform of $f \in L^1(K)$, $\widehat{f} \in C_0(\widehat{K})$, is $\widehat{f}(\alpha) := \varphi_{\alpha}(f)$ for every $\alpha \in \widehat{K}$. There exists a unique (up to a multiplicative constant) regular positive Borel measure π_K on \widehat{K} with supp $\pi_K = \mathcal{S}$ such that $\int_K |f(x)|^2 dm(x) = \int_{\mathcal{S}} |\widehat{f}(\alpha)|^2 d\pi_K(\alpha)$ for

all $f \in L^1(K) \cap L^2(K)$ [2]. The extension of the Fourier transform defined on $L^1(K) \cap L^2(K)$ to all of $L^2(K)$ onto $L^2(\widehat{K})$ is the Plancherel transform which is an isometric isomorphism. Observe that \mathcal{S} is a nonvoid closed subset of \widehat{K} , and the constant function 1 is in general not contained in \mathcal{S} [10, 9.5].

The inverse Fourier transform for $\varphi \in L^1(\widehat{K})$ is given by

$$\check{\varphi}(x) = \int_{\mathcal{S}} \varphi(\alpha)\alpha(x) \, d\pi_K(\alpha)$$

for every $x \in K$. Then $\check{\varphi} \in C_0(K)$ and if $\check{\varphi} \in L^1(K)$ then $\hat{\check{\varphi}} = \varphi$ [2].

Let $L^1(K)^*$ and $L^1(K)^{**}$ denote the dual and the bidual spaces of $L^1(K)$ respectively. As usual, $L^1(K)^*$ can be identified with the space $L^{\infty}(K)$ of essentially bounded Borel measurable complex-valued functions on K. We may define the Arens product on $L^1(K)^{**}$ as follows:

$$\langle m \cdot m', f \rangle = \langle m, m' \cdot f \rangle$$

in which $\langle m' \cdot f, g \rangle = \langle m', f \cdot g \rangle$ and $\langle f \cdot g, h \rangle = \langle f, g * h \rangle$ for all $m, m' \in L^1(K)^{**}$, $f \in L^{\infty}(K)$ and $g, h \in L^1(K)$. Then $L^1(K)^{**}$ with the Arens product is a noncommutative Banach algebra in general [3], [5]. From the definitions of the Arens product and the convolution, we may have $g \cdot f = g^* * f$ and $m \cdot (f \cdot g) = (m \cdot f) \cdot g$.

DEFINITION 2.1. Let K be a commutative hypergroup and $\alpha \in \widehat{K}$. K is called α -amenable if there exists a bounded linear functional m_{α} on $L^{\infty}(K)$ with the following properties:

- (i) $m_{\alpha}(\alpha) = 1$,
- (ii) $m_{\alpha}(\delta_{\tilde{x}} * f) = \alpha(x) m_{\alpha}(f)$, for every $f \in L^{\infty}(K)$ and $x \in K$.

For example, if K is compact or $L^1(K)$ is amenable, then K is α -amenable, for every $\alpha \in \widehat{K}$ [8], [14].

3. Main theorem.

THEOREM 3.1. Let K be a hypergroup and $\alpha \in \widehat{K}$. Suppose K is α -amenable with the unique α -mean m_{α} . Then the following hold.

- (i) m_{α} and α belong to $L^{1}(K) \cap L^{2}(K)$ and $\alpha \in \mathcal{S}$ is isolated. Further, $m_{\alpha}^{2} = m_{\alpha}$.
- (ii) $m_{\alpha} = \pi(\alpha)/\|\alpha\|_2^2$, where $\pi: L^1(K) \to L^1(K)^{**}$ is the canonical embedding.
- (iii) If α is positive, then $\alpha = 1$, hence K is compact.

PROOF. (i) Since K is α -amenable with the unique α -mean m_{α} , $m_{\alpha}(\alpha) = 1$,

and $f \cdot g = g \cdot f$, we have

$$\langle m_{\alpha}, f \cdot g \rangle = \langle m_{\alpha}, g^* * f \rangle$$

$$= \left\langle m_{\alpha}, \int_{K} (\delta_x * f) g^*(x) dm(x) \right\rangle$$

$$= \int_{K} \langle m_{\alpha}, \delta_x * f \rangle g^*(x) dm(x)$$

$$= \widehat{g}^*(\alpha) \langle m_{\alpha}, f \rangle,$$

for every $f \in L^{\infty}(K)$ and $g \in L^{1}(K)$. Moreover, if $n \in L^{1}(K)^{**}$ and $h \in L^{1}(K)$, then

$$\langle m_{\alpha} \cdot n, f \cdot g \rangle = \langle m_{\alpha}, n \cdot (f \cdot g) \rangle = \langle m_{\alpha}, (n \cdot f) \cdot g \rangle$$
$$= \widehat{g^*}(\alpha) \langle m_{\alpha}, n \cdot f \rangle = \widehat{g^*}(\alpha) \langle m_{\alpha} \cdot n, f \rangle.$$

Since the α -mean m_{α} is unique and the associated functional to α on $L^{1}(K)^{**}$ is multiplicative [5], $m_{\alpha} \cdot n = \lambda_{n} \cdot m_{\alpha}$, where $\lambda_{n} = \langle n, \alpha \rangle$. Let (n_{i}) be a net in $L^{1}(K)^{**}$ converging to n in the w^{*} -topology. Then the convergence $\lambda_{n_{i}} \to \lambda_{n}$, as $i \to \infty$, implies that the mapping $n \to m_{\alpha} \cdot n$ is w^{*} - w^{*} continuous on $L^{1}(K)^{**}$, hence m_{α} is in $L^{1}(K)$, the topological centre of $L^{1}(K)^{**}$ [11]. In that $\widehat{m_{\alpha}}(\alpha) = 1$, $g \cdot m_{\alpha} = \widehat{g}^{*}(\alpha)m_{\alpha}$ for every $g \in L^{1}(K)$, and the Arens product is continuous in the first variable, then $m_{\alpha}^{2} = m_{\alpha}$.

Let $\beta \in \widehat{K}$. The equality $\beta(x)m_{\alpha}(\beta) = m_{\alpha}(T_x\beta) = \alpha(x)m_{\alpha}(\beta)$, for all $x \in K$, implies that $m_{\alpha}(\beta) = \delta_{\alpha}(\beta)$. Since $\widehat{m_{\alpha}} \in C_0(\widehat{K})$, α is isolated in \widehat{K} and $\widehat{m_{\alpha}} \in L^1(\widehat{K})$. The inverse of Fourier theorem yields $m_{\alpha} = \widehat{m_{\alpha}}^{\vee}$, hence $\alpha \in \mathcal{S}$. Moreover, since the Plancherel transform is an isometric isomorphism of $L^2(K)$ onto $L^2(\widehat{K})$ and $\widehat{m_{\alpha}}(\beta) = \delta_{\beta}(\alpha)$, $m_{\alpha} \in L^2(K)$.

(ii) Plainly $\delta_x \cdot m_\alpha = \alpha(x) m_\alpha$, for every $x \in K$, so it follows from part (i) that $\alpha \in L^1(K) \cap L^2(K)$. Let $n_\alpha = \pi(\alpha)/\|\alpha\|_2^2$. We shall prove $m_\alpha = n_\alpha$. Apparently $\langle n_\alpha, \alpha \rangle = 1$, and for every $x \in K$ and $f \in L^\infty(K)$ we have $\langle n_\alpha, T_x f \rangle = \alpha(x) \langle n_\alpha, f \rangle$, hence n_α is a α -mean on $L^\infty(K)$. Since $m_\alpha \in L^1(K)^{**}$, there exists $(m_i)_i$ a net of functions in $L^1(K)$ such that $\pi(m_j) \xrightarrow{w^*} m_\alpha$, Goldstein's theorem [6]. Moreover, $m_j \cdot \alpha = \alpha \cdot m_j = \widehat{m_j}(\alpha)\alpha$ and $m_\alpha(\alpha) = 1$, so taking the w^* -limit yields $m_\alpha \cdot \pi(\alpha) = \pi(\alpha)$. Therefore, for every $f \in L^\infty(K)$ and $x \in K$ we have

$$\|\alpha\|_{2}^{2}\langle n_{\alpha}, f \rangle = \langle \pi(\alpha), f \rangle = \langle m_{\alpha} \cdot \pi(\alpha), f \rangle$$
$$= \langle m_{\alpha}, \pi(\alpha) \cdot f \rangle = \langle m_{\alpha}, \alpha \cdot f \rangle = \|\alpha\|_{2}^{2}\langle m_{\alpha}, f \rangle,$$

hence $m_{\alpha} = n_{\alpha}$.

(iii) By (i), since $\alpha \in L^1(K) \cap L^2(K)$, we have

$$\alpha(x) \int_K \alpha(y) \, dm(y) = \int_K T_x \alpha(y) \, dm(y) = \int_K \alpha(y) \, dm(y),$$

which implies that $\alpha(x) = 1$ for every $x \in K$, hence K is compact [10].

COROLLARY 3.2. Let K be a α -amenable hypergroup with a unique α -mean in all $\alpha \in \widehat{K} \setminus \{1\}$. Then $1 \in \mathcal{S}$.

REMARK 3.3. We observe that part (iii) of Theorem 3.1 can also be derived from part (i) and [16, Theorem 2.1].

4. Examples.

(I) **Symmetric hypergroup** [17]. For each $n \in \mathbb{N}$, let $b_n \in]0,1]$, $c_0 = 1$, and define numbers c_n inductively by $c_n = \frac{1}{b_n}(c_0 + c_1 + \dots + c_{n-1})$. A symmetric hypergroup structure on \mathbb{N}_0 is defined by $\varepsilon_n * \varepsilon_m = \varepsilon_m * \varepsilon_n = \varepsilon_n$ if $0 \le m < n$ and

 $\varepsilon_n * \varepsilon_n = \frac{c_0}{c_n} \varepsilon_0 + \frac{c_1}{c_n} \varepsilon_1 + \dots + \frac{c_{n-1}}{c_n} \varepsilon_n + (1 - b_n) \varepsilon_n.$

 \mathbb{N}_0 with the above convolution and an involution defined by the identity map is a commutative hypergroup with $\mathfrak{X}^b(\mathbb{N}_0) = \mathcal{S}$. Every nontrivial character α in $\widehat{\mathbb{N}_0}$ has a finite support, so $\alpha \in \ell^1(\mathbb{N}_0) \cap \ell^2(\mathbb{N}_0)$. Consequently by Theorem 3.1 we see that \mathbb{N}_0 is α -amenable with a unique α -mean if and only if $\alpha \neq 1$.

(II) Let $\{p_n\}_{n\in\mathbb{N}_0}$ be a set of polynomials defined by a recursion relation

(*)
$$p_1(x)p_n(x) = a_n p_{n+1}(x) + b_n p_n(x) + c_n p_{n-1}(x)$$

for $n \in \mathbb{N}$ and $p_0(x) = 1$, $p_1(x) = \frac{1}{a_0}(x - b_0)$, where $a_n > 0$, $b_n \in \mathbb{R}$ for all $n \in \mathbb{N}_0$ and $c_n > 0$ for $n \in \mathbb{N}$. There exists a probability measure $\pi \in M^1(\mathbb{R})$ such that $\int_{\mathbb{R}} p_n(x) p_m(x) d\pi(x) = \delta_{n,m} \mu_m \ (\mu_m > 0)$ [4]. Assume that $p_n(1) \neq 0$, so after renorming, for $n \in \mathbb{N}_0$ we have $p_n(1) = 1$. The relation (*) implies that $a_n + b_n + c_n = 1$ and $a_0 + b_0 = 1$. The polynomial set $\{p_n\}_{n \in \mathbb{N}_0}$ induces a hypergroup structure on \mathbb{N}_0 , which is known as a polynomial hypergroup [2].

- (i) Hypergroups of compact type [9]. If in the recursion formula (*) $a_n, c_n \to 0$ and $b_n \to 1$ as $n \to \infty$, then the induced hypergroup \mathbb{N}_0 is called to be of compact type. In this case, $S = \widehat{\mathbb{N}_0} = \mathfrak{X}^b(\mathbb{N}_0)$, 1 is the only accumulation point of $\widehat{\mathbb{N}_0}$ and nontrivial characters of \mathbb{N}_0 belong to $\ell^1(\mathbb{N}_0) \cap \ell^2(\mathbb{N}_0)$. By Theorem 3.1 we see that \mathbb{N}_0 is α -amenable with a unique α -mean if and only if $\alpha \neq 1$. For instance, the little q-Legendre polynomial hypergroup is of compact type.
- (ii) **Hypergroups of Nevai classes**. Let $\{p_n\}_{n\in\mathbb{N}_0}$ define a hypergroup structure on \mathbb{N}_0 with the relations (*). Consider the orthonormal polynomials $q_n(x) := \sqrt{h(n)}p_n(x)$, which by the recursion (*) satisfy the following recursion formula

$$xq_n(x) = \lambda_{n+1}q_{n+1}(x) + \beta_nq_n(x) + \lambda_nq_{n-1}(x), \quad \forall n \in \mathbb{N}_0,$$

where $q_0(x) = 1$, $\lambda_n = a_0 \sqrt{c_n a_{n-1}}$ for $n \geq 2$, $\lambda_1 = a_0 \sqrt{c_1}$, $\lambda_0 = 0$, and $\beta_n = a_0 b_n + b_0$ for $n \geq 1$, with $\beta_0 = b_0$. The polynomial set $(q_n)_{n \in \mathbb{N}_0}$ is of the Nevai

class M(0,1) if $\lim_{n\to\infty}\lambda_n=\frac{1}{2}$ and $\lim_{n\to\infty}\beta_n=0$. It has a bounded variation, $(q_n)_{n\in\mathbb{N}_0}\in BV$, if

$$\sum_{n=1}^{\infty} (|\lambda_{n+1} - \lambda_n| + |\beta_{n+1} - \beta_n|) < \infty.$$

THEOREM 4.1. Let $(q_n)_{n\in\mathbb{N}_0}\in BV\cap M(0,1)$ and $\alpha_x\in\widehat{\mathbb{N}_0}$, where $\alpha_x(n):=q_n(x)$ for $n\in\mathbb{N}_0$. Then the following hold:

- (i) $S \cong [-1,1] \cup A$, where A is a nonempty countable set and $[-1,1] \cap A = \emptyset$.
- (ii) If $x \in A$, then \mathbb{N}_0 is α_x -amenable with a unique α_x -mean.
- (iii) If h(n) is unbounded, then \mathbb{N}_0 is not α_x -amenable for $x \in (-1,1)$.
- (iv) If h(n) is bounded, then \mathbb{N}_0 is α_x -amenable for $x \in (-1,1)$.

PROOF. (i) This is shown in [12, Theorem 7].

(ii) Let \mathcal{S} be as in part (i). If $A \cap]1, \infty[\neq \emptyset$, then $x_1 := \sup A \in A$ corresponds to a positive character of \mathbb{N}_0 [4, Theorem 5.3]. But this contradicts the fact that a positive character in \mathcal{S} cannot be isolated [16, Theorem 2.1], hence $A \subset]-\infty, -1[$. By [12, Theorem 18, p. 36] we have

$$\lim_{n \to \infty} \frac{h(n+1)}{h(n)} \left| \frac{p_{n+1}(x)}{p_n(x)} \right| = C \lim_{n \to \infty} \left| \frac{p_{n+1}(x)}{p_n(x)} \right| = \left(|x| + (x^2 - 1)^{1/2} \right)^{-1} < 1,$$

whenever $x \in A$. This shows that α_x belongs to $\ell^1(\mathbb{N}_0)$. Hence, by Theorem 3.1, \mathbb{N}_0 is α_x -amenable with a unique α_x -mean.

Remark 4.2.

- (i) Theorem 4.1 reveals that the α -amenability of K in general depends on the asymptotic behavior of the Haar measure and α .
- (ii) Observe that in Theorem 4.1 (iii) if $x \in (-1, 1)$ then the functionals m_{α_x} are distinct.

Conjecture 4.3. Let K be a α -amenable hypergroup. Then K has either a unique α -mean or the cardinality of the set of α -means is at most 2^{2^d} , where d is the smallest cardinality of a cover of K by compact sets.

References

- 1. A. Azimifard, α -Amenability of Banach algebras on commutative hypergroups. Ph.D. thesis, Technical University of Munich, 2006.
- 2. W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups. De Gruyter, 1994.
- 3. F. Bonsall and J. Duncan, Complete Normed Algebras. Springer, Berlin, 1973.
- 4. T. S. Chihara, An Introduction to Orthogonal Polynomials. Gordon and Breach, 1978.
- P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra. Pacific J. Math. 11 (1961), 847–870.

- 6. N. Dunford and J. T. Schwartz, Linear Operators I. Wiley & Sons, 1988.
- C. F. Dunkl, The measure algebra of a locally compact hypergroup. Trans. Amer. Math. Soc. **179** (1973), 331–348.
- F. Filbir, R. Lasser and R. Szwarc, Reiter's condition P_1 and approximate identities $for\ hypergroups.\ {\it Monatsh.}\ {\it Math.}\ {\bf 143}\ (2004),\ 189-203.$
- Hypergroups of compact type. J. Comput. Appl. Math. 178 (2005), 205–214.
- 10. R. I. Jewett, Spaces with an abstract convolution of measures. Adv. in Math. 18 (1975), 1-101.
- 11. G. R. A. Kamyabi, Topological center of dual Banach algebras associated to hypergroups. Ph.D. thesis, University of Alberta, 1997.

 12. P. G. Nevai, Orthogonal Polynomials. Mem. Amer. Math. Soc., 1979.
- 13. A. L. T. Paterson, Amenability. Amer. Math. Soc., 1988.
- 14. M. Skantharajah, Amenable hypergroups. Illinois J. Math. 36 (1992), 15-46.
- 15. R. Spector, Aperçu de la théorie des hypergroupes. Lecture Notes in Math. 497, Springer, Berlin, 1975, 643-673.
- 16. M. Voit, Positive characters on commutative hypergroups and some applications. Math. Z. 198 (1988), 405–421.
- _____, Factorization of probability measures on symmetric hypergroups. J. Aust. Math. Soc. **50** (1991), 417–467.

Dietlinden Strasse 16 80802 München BayernDeutschland

 $email: \ azimifard@hotmail.de$