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HYPERGROUPS WITH UNIQUE a-MEANS
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ABSTRACT. Let K be a commutative hypergroup and o € K. We
show that K is a-amenable with the unique a-mean m. if and only if
me € LY (K) N L%(K) and a is isolated in K. In contrast to the case
of amenable noncompact locally compact groups, examples of polynomial
hypergroups with unique a-means (o # 1) are given. Further examples
emphasize that the a-amenability of hypergroups depends heavily on the
asymptotic behavior of Haar measures and characters.

RESUME.  Soit K un hypergroupe commutatif et o € . Nous mon-
trons que K est a-moyennable avec unicité de ’a-moyenne mg, si et seule-
ment si mq € LY(K) N L2(K) et o est isolé dans K. Contrairement au
cas des groupes moyennables localement compacts mais non compacts,
des exemples d’hyper-groupes polynomiaux avec unicité des a-moyennes
(o # 1) sont donnés. Nous montrons a ’aide d’autres examples que
I’a-moyennabilité des hypergroupes dépend fortement de leurs mesures de
Haar ainsi que du comportement des caracteres.

1. Introduction. Recently the notion of a-amenable hypergroups was in-
troduced and studied in [8]. Let K be a commutative locally compact hyper-
group and let L!'(K) denote the hypergroup algebra. Assume that o € K and
denote by I(a) the maximal ideal in L'(K) generated by o. As shown in [8],
K is a-amenable if and only if either I(«) has a b.a.i. (bounded approximate
identity) or K satisfies the modified Reiter’s condition of Pj-type in «. Com-
mutative hypergroups are always 1-amenable [14], whereas a large class of non
a-amenable hypergroups, a # 1, are given in [1], [8]. It is worthwhile to mention
that 1 € supp 7k does not hold in general, where supp 7k denotes the support
of the Plancherel measure on K [10], [14].

As in the case of locally compact groups [13], if K is a noncompact locally
compact amenable hypergroup, then the cardinality of (1-)means is 22(17 where
d is the smallest cardinality of a cover of K by compact sets [14]. However, it is
well known that K has a unique (1-)mean if and only if K is compact [13], [14].
Hence, supp 7 = K and K is a-amenable for every o € K 2], (8]
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For a a-amenable hypergroup K with a unique a-mean, one can pose the
natural question of whether K is compact or K is 3-amenable when o # 3 €
K. Theorem 3.1 answers this question completely. In addition, examples of
polynomial hypergroups show that the a-amenability of hypergroups depends
on the asymptotic behavior of the Haar measures and characters. Furthermore,
the a-amenability of K with a unique a-mean (a # 1), even in every o € K\ {1},
does not imply the compactness of K; see Section 4.

Different axioms for hypergroups are given in [7], [10], [15]. However, in this
paper we refer to Jewett’s axioms in [10].

2. Preliminaries. Let (K,w,~) be a locally compact hypergroup, where
w: K x K — MY(K) defined by (x,y) — w(z,y), and ~: K — K defined by
x — Z, denote the convolution and involution on K, where M*(K) stands for the
set of all probability measures on K. The hypergroup K is called commutative
if w(z,y) = w(y,x) for every z,y € K.

Throughout this paper K is a commutative hypergroup. Let C.(K) be the
spaces of all continuous functions on K with compact support. The translation
of f € C.(K) at the point z € K, T, f, is defined by

T.f(y) := /Kf(t) dw(x,y)(t), foreveryye K.

Commutativity of K ensures the existence of a Haar measure m on K which
is unique up to a multiplicative constant [15]. Let (LP(K),| - |,) (p = 1,2)
denote the usual Banach space of Borel measurable functions on K [10, 6.2].
For f,g € L'(K) we may define the convolution and involution by f * g(z) :=
S F(W)Tyg(x) dm(y) (m-a.e. on K) and f*(x) = f(&), respectively, that
(LY(K),|| - |l1) becomes a Banach x-algebra. If K is discrete, then L'(K) has an
identity element. Otherwise L'(K) has a b.a.i., i.e., there exists a net {e;}; of
functions in L'(K) with |le;||; < M, for some M > 0, such that ||f*e; — f|]l1 — 0
as i — oo [2]. The set of all multiplicative linear functionals on L!(K), i.e., the
maximal ideal space of L'(K) [3], can be identified with

X(K) :={a e CVK):a#0,w(x,y)(a) = a()a(y),Vz,y € K}

via 0o (f) = [i f(z)a(z)dm(z), for every f € LY(K). X’(K) is a locally
compact Hausdorff space with the compact-open topology [2]. Xb(K) and its

subset R

K:={acX"K):a(@)=ax),Vo e K}
are considered as the character spaces of K. The maximal ideal in L'(K) gen-
erated by the character a is I(a) := {f € LY(K) : ¢a(f) = 0}. The Fourier
transform of f € LY(K), f € Co(K), is f(a) := @a(f) for every a € K. There

exists a unique (up to a multiplicative constant) regular positive Borel measure
7k on K with supp mx = S such that [, |f(2)]* dm(z) = [|f(@)|* drk () for
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all f € LY(K)N L*(K) [2]. The extension of the Fourier transform defined on
LY(K)NL*(K) to all of L?(K) onto LZ(I?) is the Plancherel transform which is
an isometric isomorphism. Observe that S is a nonvoid closed subset of K , and
the constant function 1 is in general not contained in § [10, 9.5].

The inverse Fourier transform for ¢ € Ll(IA( ) is given by

B(x) = /S p(a)alz) drg (o)

for every z € K. Then ¢ € Co(K) and if ¢ € L'(K) then ¢ = ¢ [2].

Let L'(K)* and L'(K)** denote the dual and the bidual spaces of L!(K)
respectively. As usual, L'(K)* can be identified with the space L>°(K) of es-
sentially bounded Borel measurable complex-valued functions on K. We may
define the Arens product on L!(K)** as follows:

(m-m’, f) = (m,m’- f)

in which (m'- f,g) = (m/, f-g) and (f-g,h) = (f,g=*h) for all m, m’ € L*(K)**,
f € L*(K) and g,h € L'(K). Then L'(K)** with the Arens product is a
noncommutative Banach algebra in general [3], [5]. From the definitions of the
Arens product and the convolution, we may have g- f = ¢** f and m - (f - g) =

(m-f)-g.

DEFINITION 2.1. Let K be a commutative hypergroup and « € K. K is
called a-amenable if there exists a bounded linear functional m, on L (K) with
the following properties:

(i) mala) =1,
(il) ma(0z * f) = a(z)ma(f), for every f € L*(K) and z € K.

For example, if K is compact or L'(K) is amenable, then K is a-amenable,
for every o € K [8], [14].

3. Main theorem.

THEOREM 3.1.  Let K be a hypergroup and a € K. Suppose K is a-
amenable with the unique a-mean my,. Then the following hold.
(i) mea and a belong to L'(K) N L?(K) and o € S is isolated. Further,
m2 =mgy.
(i) ma = 7(a)/||l|3, where m: LY(K) — LY(K)** is the canonical embedding.
(i) If « is positive, then a = 1, hence K is compact.

PROOF. (i) Since K is a-amenable with the unique a-mean m,, mq (o) = 1,
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and f-g=g-f, we have

(Ma, - 9) = (Ma,g" * f)

= (ma. [ (625 D @im(a))

= (Ma, 0z * f)g” () dm(z)

for every f € L°(K) and g € L*(K). Moreover, if n € L'(K)** and h € L*(K),
then

(Mo -1, f-g) = (Ma,n-(f-g)) = (Ma,(n-f)g)
ZgA*(a)<ma,n~f> :gA*(oz)<ma-n,f>.

Since the a-mean m,, is unique and the associated functional to o on L' (K)*
is multiplicative [5], mq -7 = A, - Mg, where A, = (n,a). Let (n;) be a net in
LY(K)** converging to n in the w*-topology. Then the convergence \,, — A, as
i — 00, implies that the mapping n — m,, - n is w*-w* continuous on L'(K)**,
hence m,, is in L!(K), the topological centre of L*(K)** [11]. In that mg,(a) = 1,
g-ma = g*(a)my for every g € L*(K), and the Arens product is continuous in

the first variable, then m?2 = my,.

Let 3 € K. The equality B@x)ma(8) = ma(Tef) = a(x)my(B), for all
x € K, implies that m,(3) = §,(8). Since m,, € C()(IA{), a is isolated in K and
Mg € Ll(l/(\'). The inverse of Fourier theorem yields m, = Mg ", hence a € S.
Moreover, since the Plancherel transform is an isometric isomorphism of L?(K)
onto L2(K) and 4 () = 65(cr), me € LX(K).

(ii) Plainly 0, - mo = a(x)mg, for every x € K, so it follows from part (i)
that o € L'(K) N L?(K). Let ny = m(a)/|al|3. We shall prove m, = n,. Ap-
parently (n,,a) =1, and for every x € K and f € L (K) we have (n,,T,f) =
a(z){na, f), hence n, is a a-mean on L>=(K). Since m,, € L'(K)**, there exists

*

(mi); a net of functions in L'(K) such that 7(m;) —— m,, Goldstein’s theo-
rem [6]. Moreover, m; - & = - m; = m;(a)a and my(a) = 1, so taking the
w*-limit yields m,, - 7(a)) = 7(«). Therefore, for every f € L*(K) and z € K
we have

all3(na, f) = (m(a), f) = (ma - 7(a), f)
= (ma,7(@) - ) = (ma, - f) = |a]5(ma, f),
hence my, = ng.

(iii) By (i), since @ € L (K) N L?(K), we have

o) [ atdmiy) = [ Tty dm(s) = [ at)dny)

K
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which implies that a(xz) =1 for every x € K, hence K is compact [10]. O

COROLLARY 3.2. Let K be a a-amenable hypergroup with a unique a-mean
inalae K\{l}. Then1€S.

REMARK 3.3. We observe that part (iii) of Theorem 3.1 can also be derived
from part (i) and [16, Theorem 2.1].

4. Examples.

(I) Symmetric hypergroup [17]. For each n € N, let b, € ]0,1], ¢o = 1,
and define numbers ¢,, inductively by ¢, = i(co +e1+---+cp—1). A symmetric
hypergroup structure on Ny is defined by €, x &, = € %6, =€, If 0 <M < n

and
Cn—1

5n*sn:0—050+c—151+~-+ €n + (1 —bp)en.

Ny with the above convolution and an involution defined by the identity map is
a commutative hypergroup with X*(Ny) = S. Every nontrivial character a in
I<T\0 has a finite support, so a € £1(Ng) N ¢?(Ny). Consequently by Theorem 3.1
we see that Ny is a-amenable with a unique a-mean if and only if o # 1.

(IT) Let {pn}nen, be a set of polynomials defined by a recursion relation

(*) P1(®)pn(®) = anpni1(z) + bppn () + cnpn—1(z)

for n € N and po(z) = 1, p1(z) = %(x — bo), where a, > 0, b, € R for all
n € Ny and ¢, > 0 for n € N. There exists a probability measure 7 € M*(R)
such that [o pn(2)pm(z) dr(x) = 8nmptm (pm > 0) [4]. Assume that p,(1) # 0,
so after renorming, for n € Ny we have p,(1) = 1. The relation (x) implies
that a, + b, + ¢, = 1 and ag + by = 1. The polynomial set {p, }nen, induces a
hypergroup structure on Ny, which is known as a polynomial hypergroup [2].

(i) Hypergroups of compact type [9]. If in the recursion formula (%)
Qn,Cp — 0and b, — 1 as n — oo, then the induced hypergroup Ny is called to be
of compact type. In this case, S = I/\I\O = Xb(Np), 1 is the only accumulation point
of Ny and nontrivial characters of Ny belong to £*(Ng) N¢2(Np). By Theorem 3.1
we see that Ny is a-amenable with a unique a-mean if and only if o # 1. For
instance, the little g-Legendre polynomial hypergroup is of compact type.

(ii) Hypergroups of Nevai classes. Let {p,}nen, define a hypergroup
structure on Ny with the relations (x). Consider the orthonormal polynomials
Gn(z) := y/h(n)p,(x), which by the recursion (x) satisfy the following recursion
formula

xQn(x) = )\nJrl(J'rH»l(m) + ﬁnqn(x) + )\nanl($>7 Vn € NO,

where qo(z) = 1, A,y = ag\/Cnan_1 for n > 2, A\ = ag\/c1, Ao = 0, and 3, =
apby, + by for n > 1, with Sy = by. The polynomial set (g, )nen, is of the Nevai
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class M(0,1) if lim A, = 5 and lim 8, = 0. It has a bounded variation,

n—oo n— o0

(Qn)nGNo S BV, lf
Z(|>\n+l - )\n| + |ﬂn+1 - ﬂn‘) < 00
n=1

THEOREM 4.1.  Let (¢n)nen, € BVNM(0,1) and oy € No, where agz(n) ==
gn(x) for n € Ng. Then the following hold:

(i) S=[-1,1]UA, where A is a nonempty countable set and [-1,1]NA = &.
(ii) Ifx € A, then Ny is a,-amenable with a unique o, -mean.

(iii) If h(n) is unbounded, then Ny is not az-amenable for x € (—1,1).

(iv) If h(n) is bounded, then Ny is a,-amenable for x € (—1,1).

Proor. (i) This is shown in [12, Theorem 7).

(ii) Let S be as in part (i). If ANJl,00] # @, then 21 := supA € A
corresponds to a positive character of Ny [4, Theorem 5.3]. But this contradicts
the fact that a positive character in S cannot be isolated [16, Theorem 2.1],
hence A C ]—o00, —1[. By [12, Theorem 18, p. 36] we have

m [220 ) — (faf 2 - 1) <1,

’ n~>oo

whenever x € A. This shows that a, belongs to ¢!(Ng). Hence, by Theorem 3.1,
Np is az-amenable with a unique o, -mean.
(iii) and (iv) are shown in [8, Theorems 4.10-11]. O

REMARK 4.2.

(i) Theorem 4.1 reveals that the a-amenability of K in general depends on
the asymptotic behavior of the Haar measure and a.

(ii) Observe that in Theorem 4.1 (iii) if € (—1,1) then the functionals m,,,
are distinct.

CONJECTURE 4.3. Let K be a a-amenable hypergroup. Then K has either
a unique a-mean or the cardinality of the set of a-means is at most 22d, where
d is the smallest cardinality of a cover of K by compact sets.
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