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ON THE CYCLES OF INDEFINITE BINARY QUADRATIC
FORMS AND CYCLES OF IDEALS III

AHMET TEKCAN

Presented by Edward Bierstone, FRSC

ABSTRACT. Let § be a real quadratic irrational integer with trace t =
846 and norm n = 8.5. Then for a real quadratic irrational v € Q(d), there
are rational integers P and @Q such that v = % with Q|(§ + P)(6 + P).
So for each v, we have an ideal I, = [Q, P 4 §] and an indefinite quadratic
form Fy(zx,y) = Q(z + dy)(x + dy) of discriminant A = t? — 4n. In this
work, we derive some properties of I, and F for some specific values of J.

RESUME. Soit 4 un entier irrationel quadratique réel de trace t = § +6
et norme n = 0.0. Pour un irrationel quadratique réel v € Q(9), il existe
des entiers rationels P et Q tels que v = PTH avec Q|(6+ P)(6 + P). Ainsi

pour chaque 7, on a un idéal I, :JQ7 P + 4] et une forme quadratique
indéfinie Iy (z,y) = Q(x + dy)(z + y) de discriminant A = ¢2 — 4n. On
déduit quelques propriétés de I et Fly pour certains valeurs de 4.

1. Introduction. A real binary quadratic form (or just a form) F is a
polynomial in two variables x,y of the type

(1.1) F = F(z,y) = az® + bxy + cy?

with real coefficients a,b,c. We denote F briefly by F' = (a,b,¢). The discrimi-
nant of F is defined by the formula b?> — 4ac and is denoted by A. A quadratic
form F' of discriminant A is called indefinite if A > 0, and is called integral if
and only if a,b, c € Z. An indefinite quadratic form F = (a,b, ¢) of discriminant
A is said to be reduced if

(1.2) VA —2a|| <b < VA.

Most properties of quadratic forms can be giving by the aid of extended
modular group T (see [10]). Gauss (1777-1855) defined the group action of I on
the set of forms as follows:

(1.3) gF (z,y) = (ar® 4 brs + cs®)x? + (2art + bru + bts + 2csu)xy
+ (at® + btu + cu?)y?
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TS

for g = (%3) = [rsit;u] € T, that is, gF is gotten from F by making the
substitution x — rz + tu and y — sz + uy. Moreover A(F) = A(gF) for all
g € T, that is, the action of T on forms leaves the discriminant invariant. If F
is indefinite or integral, then so is gF for all g € T'. Let F and G be two forms.
If there exists a g € I’ such that gF = G, then F and G are called equivalent. If
detg = 1, then F and G are called properly equivalent and if det g = —1, then
F and G are called improperly equivalent. A form F' is called ambiguous if it
is improperly equivalent to itself. An element g € T is called an automorphism
of Fif gFF = F. If detg = 1, then g is called a proper automorphism of F' and
if det g = —1, then g is called an improper automorphism of F. Let Aut(F)*
denote the set of proper automorphisms of F' and let Aut(F)~ denote the set
of improper automorphisms of F' (for further details on binary quadratic forms
see [1-3]).

Let p(F) denotes the normalization (it means that replacing F' by its normal-
ization) of (¢, —b,a). To be more explicit, we set

(1.4) p(F) = (¢, —b + 2cry, cr? — bry + a),
where

sign(c) LﬁJ for [c| > VA,
sign(c){bgﬁj for |¢| < VA

(1.5) r=r(F)= {

for ¢ > 0. The number r is called the reducing number and the form p(F) is
called the reduction of F. Further if F' is reduced, then so is p(F’). In fact, p is
a permutation of the set of all reduced indefinite forms. Let 7(F) = 7(a,b,¢) =
(—a,b,—c). Then the cycle of F is the sequence ((1p)(G)) for i € Z, where
G = (A, B,C) is a reduced form with A > 0 which is equivalent to F. The cycle
of I’ can be derived by the following theorem.

THEOREM 1.1.  Let F' = (a,b,c) be reduced indefinite quadratic form of
discriminant A. Then the cycle of F is a sequence Foy ~ F) ~ Fy ~ -+« ~ Fj_4
of length 1, where Fy = F = (ag, bo, o),

brl-\/EJ

(1.6) s = |s(F})| = [ el

and
(1.7) Fip1 = (aiy1,bip1, civ1) = (Jei], =bi + 2s4]c;], —(a; + bis; + ¢is7))

for1<i<l-—2I[1].

Mollin [4] considered the arithmetic of ideals in his book. Let D # 1 be a
square-free integer and let A = 47[2), where r =2 if D =1 (mod 4) and r = 1,
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otherwise. If we set K = Q(v/D), then K is called a quadratic number field of
discriminant A. Thus there is a one-to-one correspondence between quadratic
fields and square-free rational integers D # 1.

A complex number is an algebraic integer if it is the root of a monic polynomial
with coefficients in Z. The set of all algebraic integers in the complex field C
is a ring which we denote by A. Then A NK = Op is the ring of integers of
the quadratic field K of discriminant A. Let I = [«, 3] denote the Z-module
aZ & PBZ for o, € K, i.e., the additive abelian group, with basis elements «
and 3 consisting of {ax + By : x,y € Z}. Then Oa = [1, H?}/B]. In this case

r—14+vD

is called the principal surd. Every principal surd wa € Oa can
be uniquely expressed as wa = xa + yF, where z,y € Z and «, 8 € Oa. We call
a, 0 an integral basis for K. If aﬁ\/_ga > (, then o and 3 are called ordered basis
elements. Two basis of an ideal are ordered if and only if they are equivalent
under an element of . If I has ordered basis elements, then we say that I is
simply ordered. If I is ordered, then

WA —

N(az + By)

F(z,y) = N

is a quadratic form of discriminant A (here N(x) denotes the norm of z). In
this case we say that F' belongs to I and write I — F'.
Conversely let us assume that

G(z,y) = Az? + Bry + Cy? = d(ax® + bxy + cy?)

be a quadratic form, where d = + ged(A, B, C) and b? —4ac = A. If B2 —4AC >
0, then we get d > 0, and if B2 —4AC < 0, then we choose d such that a > 0. If

[a, b—;/Z]\/Z for a < 0 and A > 0,

b—vA
I:[ayﬁ]:{[a, 2 ] fOI‘a>0’

then I is an ordered Oa-ideal. Note that if a > 0, then I is primitive, and if
a < 0, then TIZ is primitive. Thus to every form G, there corresponds an ideal
I to which G belongs and we write G — I. Hence we have a correspondence
between ideals and quadratic forms (for further details see [5-7]).

THEOREM 1.2. If I =|[a,b+ cwal, then I is a non-zero ideal of Oa if and
only if c|b, cla and ac|N(b+ cwa) [4].

Let ¢ denote a real quadratic irrational integer with trace t = ¢ + 6 and norm
n = 69. Given a real quadratic irrational v € Q(0), there are rational integers P
and Q such that v = % with Q|(6 + P)(6 + P). Hence for each

P+9
7:7

(1.8) 5
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there is a corresponding Z-module
(1.9) L=[Q P+d

(in fact, this module is an ideal by Theorem 1.2) and an indefinite quadratic
form

(1.10) Fy(z,y) = Q(z + 6y)(z + dy)

of discriminant A = t? — 4n. The ideal I, in (1.9) is said to be reduced if and
only if

(1.11) P+6>Qand —Q<P+06<0
and is said to be ambiguous if and only if it contains both % and £t

and only if %5 € Z.

Let [mg; 1, Mz, ..., m;—1] denote continued fraction expansion of v with pe-
riod length I = I(I), where

52*Pi2+1

(1.12) 51

i = {Pi - 6J, Pii1=miQ; — P and Q41 =
Qi

for ¢+ > 0. From the continued fraction factoring algorithm we get all reduced

ideals equivalent to a given reduced ideal I, i.e., in the continued fraction ex-

pansion of v we have I, = I,? ~ I% ~ e Ify’l. Finally I,ly = IS for a complete

cycle of reduced ideals of length I(I) = I.

2. Quadratic ideals and quadratic forms. In [8], [9], and [11], we de-
rived some properties of quadratic irrationals v = %, quadratic ideals I, and
indefinite quadratic forms F, in (1.8), (1.9) and (1.10), respectively. In this sec-
tion we consider the same problem for some specific values of § = v/D, where
D # 1 is a square-free positive integer. Now let v = —k 4+ /D for an integer

k > 1. Then

(2.1) I,=[1,-k+ VD]
is a quadratic ideal, and

(2.2) F, = (1,2k,k* — D)

is an indefinite binary quadratic form of discriminant A = 4D.
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2.1. Quadratic ideals. In this subsection, we will consider some properties of
and I, in four cases: D =k?+1, D =k*+2, D = k*+2k—1 and D = k? + 2k.

THEOREM 2.1.  Let I, be the ideal in (2.1).

(1) If D = k2 + 1, then the continued fraction expansion of ~ is [0;2k] and the
cycle of I, is IO [1,—k ++/D] D]~ 1} =1, k4 /D] of length 2;

(2) If D = k*+ 2, then the continued fmctzon expansion of v is [0; k, 2k| and the
cycle of I, is I9 = |1, _k+\/>}~]1 [Qk:—l—\/»]NIQ [1k—|—\/>]of
length 3;

(3)If D = k? + 2k — 1, then the continued fraction expansion of 7 is
[0;1,k—1,1,2k] and the cycle of I, is IY = [1, —k++/D] D~ 1) =[2k—1,k+
VD]~ I2=[2,k—1+VD]~ I3 = [2k:—1 k-1+\ﬁ]~14 1, k:+\/>]
of length 5;

(4) If D = k? 4 2k, then the continued fraction expansion of ~y is [0;1,2k| and
the cycle of I, zsIO [1,—k+ VD] D]~ I} = [2k, k++/D] D]~ 12 =1, k++/D]
of length 3.

PROOF. (1) Let D = k*+1. Then I, = I9 = [, —k+Vk? + 1]. So we have
from (1.12) mo = 0 and hence P, = k and Q1 = 1. For i = 1, we have m; = 2k
and hence P, = k = P; and Q2 = 1 = Q1. For i = 2, we have mo = 2k = m;.
Therefore the continued fraction expansion of v is [0;2k] and the cycle of I, is
I9=[1,-k+ VD] ~ I! = [1,k + VD] of length 2.

(2) Let D = k*+42. Then I, = IS = [1,—k + Vk? +2]. We have mo = 0
and so P, = k and ); = 2. For i = 1, we have m; = k and hence P, = k and
Q2 = 1. For i = 2, we have mo = 2k and hence P; =k = P, and Q3 = 2 = Q.
For i = 3, we have m3z = k = my. Therefore the continued fraction expansion
of v is [0; k, 2k], and the cycle of I, is I9 = [1, —k + VD] ~ I = 2,k + VD] ~
2=, k 4+ /D] of length 3.

(3) Let D =k*+2k —1. Then I, = IS = [1, -k + Vk? 4 2k — 1]. Hence we
have mg = 0, andsoPl—kandQl—%:—l For i = 1, we have m; = 1 and
hence P, = k—1 and Q2 = 2. For ¢ = 2, we have my = k—1 and hence P3 = k—1
and Q3 = 2k — 1. For ¢ = 3, we have m3 = 1 and hence P, = k and Q4 = 1.
For ¢ = 4, we have my = 2k and hence Ps = k = P, and Q5 =2k — 1 = (). For
i = b, we have ms = 1 = my. Therefore the continued fraction expansion of ~
is [0;1,k — 1,1,2k] and the cycle of I, is I = [1,—k + VD] ~ I} = [2k — 1,k +
VD~ I2=12,k—1+ VD]~ I3 = [2k:—1 k—1++VD]~It=1, k:+\/>] of
length 5.

(4) Let D = k* 4 2k. Then I, = IV = [1, =k 4 V/k% + 2k] and hence mg = 0
and P, = k and Q1 = 2k. For i = 1 we have m; = 1 and hence P, = k and
Q2 = 1. For i = 2, we have my = 2k and hence P3; = k = P; and Q3 = 2k = Q1.
For i = 3, we have m3 = 1 = m;. Therefore the continued fraction expansion of
7 is [0;1,2k] and the cycle of I, is I = [1,—k + VD] ~ I = [2k,k + VD] ~

= [1,k + VD] of length 3. 0
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EXAMPLE 2.1. Let k =6.

(1) If D = 62 4 1 = 37, then the continued fraction expansion of v = —6 4 /37
is [0;12] and the cycle of I is 19 = [1,—6 + V/37] ~ I} = [1,6 + v/37].

(2) If D = 62 + 2 = 38, then the continued fraction expansion of vy = —6 + /38
is [0;6,12] and the cycle of I, is 19 = [1,—6 + v/38] ~ I} = [2,6 + v/38] ~

I? =[1,6+/38].

(3) If D = 62 4+ 2.6 — 1 = 47, then the continued fraction expansion of v =
—6 4 /47 is [0;1,5,1,12] and the cycle of I, is I9 = [1,—6 + V47| ~ I =
[11,6 + VA7) ~ I2 = [2,5 + V4T] ~ I3 = [11, 5+f]~14 1, 6+\F]

(4) If D = 6% +2.6 = 48, then the continued fraction expansion of v = —6+ /48
is [0,1,12] and the cycle of I is I = [1,—6 4 v/48] ~ I} = [12,6 + v/48] ~

= [1,6 + v/48].
THEOREM 2.2.  The ideals I, in Theorem 2.1 are not reduced.

PROOF. Let D =k?+ 1. Then I, = [1,—k + vk? + 1]. Recall that k > 1,
so 2k > 0. Hence

2k + k2 +1> kK +1le k+1)?>kEHlek+1>Vitlel> k+VE+1

which is in contradiction to (1.11). So I, is not reduced. The other cases can be
dealt with similarly. O

2.2.  Quadratic forms. In this subsection, we will consider some properties of
indefinite binary quadratic forms F.,. First we consider their reducibility.

THEOREM 2.3.  F, is reduced if and only if k* < D < k* + 2k + 1.
PRrOOF.  Let F, be reduced. Then by (1.2) we have

VA —2lal| <b< VA& |VAD —2| <2k < V4D & VD -1 <k < VD.

Hence it is clear that k? < D and D < (k+ 1)%. So k? < D < k? + 2k + 1.
Conversely let k* < D < k> + 2k + 1. Then k < v/D and VD < k+ 1. So

IVAD — 2| < 2k < VAD & |[VA - 2[a|| <b< VA

and hence F, is reduced by (1.2). O

Now we can give the following theorem concerning the cycles of F., in four
cases: D=k>+1,D=%k>+2, D =k?>+2k—1 and D = k?®+ 2k. Note that for
these values of D, F), is reduced by Theorem 2.3.

THEOREM 2.4.  Let F, be the quadratic form in (2.2).
(1) If D = k? + 1, then the cycle of F, is F$ = (1,2k,—1) of length 1.
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(2) If D = k* +2, then the cycle of Fy is FY = (1,2k, =2) ~ F} = (2,2k, —1) of
length 2.

(3) If D = k? + 2k — 1, then the cycle of F, is F,(Y) = (1,2k, -2k +1) ~ Fﬂ} =
(2 — 1,2k — 2,-2) ~ F2 = (2,2k — 2,—2k + 1) ~ F3 = (2k — 1,2k, —1) of
length 4.

(4) If D = k* + 2k, then the cycle of F is FY = (1, 2k, —2k) ~ F = (2k, 2k, —1)
of length 2.

PROOF. (1) Let D =k?+1. Then F, = F) = (1,2k,—1). Applying (1.6),
we get so = 2k and hence by (1.7), we get F,} = (a1,b1,¢1) = (1,2k,—1) = F,?.
Therefore the cycle of F, is completed and is Fg = (1,2k,—1) of length 1.

(2) Let D = k* +2. Then F, = F) = (1,2k,—2) and hence sy = k.
So F% = (a1,b1,c1) = (2,2k,—1). Similarly we find that s; = 2k and Ff =
(ag,ba,c2) = (1,2k,—2) = Fg. Therefore the cycle of F, is completed and is
FO = (1,2k,—2) ~ F! = (2,2k, —1) of length 2.

(3) Let k* + 2k — 1. Then F, = F = (1,2k,—2k + 1) and hence so = 1.
So Fy = (a1,b1,¢1) = (2k — 1,2k — 2,—2). Similarly we can obtain s; = k —1
and F2? = (ag,b2,¢2) = (2,2k — 2,1 — 2k). Also s = 1 and F? = (a3, b3,¢c3) =
(2k — 1,2k, —1). Finally s3 = 2k and F} = (as,by,cs) = (1,2k,1 — 2k) = F.
Therefore the cycle of F, is completed and is FY = (1,2k, -2k + 1) ~ F] =
(2k — 1,2k — 2,-2) ~ F2 = (2,2k — 2,~2k + 1) ~ F3 = (2k — 1,2k, 1) of
length 4.

(4) Let D = k* + 2k. Then F, = FS (1,2k, —2k) and hence sy = 1.
So F; = (a1,b1,¢1) = (2k,2k,—1). For i = 1 we have s; = 2k and hence
F2 = (a,by,c2) = (1,2k,—2k) = FY. Therefore the cycle of F, is completed
and is F = (1,2k, —2k) ~ F} = (2k, 2k, —1) of length 2. O

EXAMPLE 2.2. Let k=1T1.

(1) If D = 7% + 1 = 50, then the cycle of F, = (1,14, —1) is F) = (1,14, —1) of
length 1.

(2) If D = 7% + 2 = 51, then the cycle of F, = (1,14, -2) is FY = (1,14, -2) ~
F! = (2,14,-1) of length 2.

(3)If D = 72 +2.7 — 1 = 62, then the cycle of F,, = (1,14,-13) is ) =
(1,14, -13) ~ F! = (13,12, -2) ~ F2 = (2,12,~13) ~ F3 = (13,14, 1) of
length 4.

(4) If D = 7242.7 = 63, then the cycle of F,, = (1,14, —14) is F$ =(1,14,-14) ~
F! = (14,14, 1) of length 2.

Now we consider the proper and improper automorphisms of F,.

THEOREM 2.5.  Let F, be the quadratic form in (2.2).
(1) If D = k* + 1, then

6 ifk=12,

+ _
# Aut(F) _{2 ifk> 2
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and
8 ifk=1,

#NMR):{4Uk>L

(2) If D = k? + 2, then

10 ifk=1,
#AW(F)T =<6 ifk=2,3,
2 ifk >3,
and
10 ifk=1,
#Aut(F)" =<6 ifk=2,
4  aifk>2.
(3) If D = k2 + 2k — 1, then
6 ifk=1,2
Aut(F,)"T = o
# Aut(F) {2 ifk>2,
and
8 ifk=1
Aut(F,)” = ’
# Aut(F) {4 ifk>1.

(4) If D = k? + 2k, then
10 ifk=1
Aut(F)t = #Aut(F,)” = ’
# Aut(Fy) # Aut(Fy) {6 ifk>1.
Proor. (1):
24 2rs — s =1,
2rt + 2ru + 2ts — 2su = 2,
t2 + 2tu — u? = -1,
has a solution for g = +[5; —2; —2; 1], +[1; 2; 2; 5], =[1; 0; 0; 1]. So
Aut(F,) T = {£[5; —2; —2; 1], £[1; 2; 2; 5], £[1;0; 0; 1]}

and hence # Aut(F,)" = 6. Similarly we find that

Aut(Fy) " = {£[17; —4; —4; 1], £[1; 4; 4;17], £[1; 0; 0; 1]}

for k =2 and Aut(F,)" = {£[1;0;0;1]} for all k£ > 2.

29

Let k =1. Then F), = (1,2, —1). The system of equations
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Now we consider the improper automorphisms. The system of equations
r? 4+ 2rs — s =1,
2rt + 2ru + 2ts — 2su = 2,
2 4 2tu — u? = —1,
has a solution for
g = £[5;12; —2; —5], £[5; —2;12; —5], £[1; 2;0; —1], £[1; 0; 2; —1],
SO
Aut(Fy)™ = {£[5;12; —2; —5], £[5; —2; 12; —5], £[1; 2; 0; —1], £[1; 0; 2; —1] }
and hence # Aut(F,)~ = 8. Similarly we find that
Aut(F,)” = {£[1;2k; 0; —1], £[1; 0; 2k; —1]}
for every k > 1.

2)—(4): With the same argument we find that if D = k2 + 2, then
(2)-(4) g

{£[11; —4; —8; 3], £[3:4: 8; 11], £[3; 15 —2; 1],
+[1;2;2; 3], £[1;0;0; 1] } for k =1,

Aut(F7)+ {£]9; —2; —4; 1], +[1; 2; 4; 9], +[1; 0; 0; 1]} for k = 2,
{£[19; —3; —6; 1], £[1; 3;6; 19], £[1;0; 0; 1]} for k = 3,
{£[1;0;0; 1]} for k > 3,
and
{£[11; 15; —8; —11], £[3;4; —2; —3], £[3; —1; 8; —3]
+(1;1;0; —1], £[1;0;2; —1 fork=1
Aut(Fv)_ _ [ 5 Ly Uy ]a [ 5 Uy &y ]} or 5
{£]9; 20; —4; —9], £[1;2; 0; —1], £[1; 0;4; —1]} for k =2,
{%[1; k; 0; —1], £[1; 0; 2k; —1]} for k > 2.

It D = k2 + 2k — 1, then

{£05; =2, =25 1], £[1; 2;2; 5], £[1;0;0; 1]} for k = 1,

Aut(F,)" = ¢ {£[14; —3; -9;2], +[2; 3;9; 14], £[1;0;0; 1]}  for k = 2,
{£[1;0;0; 1]} for k > 2,

and

{=£[5;12; —2; —5], £[5; —2; 12; 5],

Aut(F,)” = +[1;2;0; —1],£[1;0;2; —1]} for k=1,
{£lk;k+1;1 — k; —k], £[1;0; 2k; —1]} for k > 1.
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Finally if D = k2 + 2k, then

{£[11; —4; —8; 3], £[3; 4; 8; 1], £[3; —1;2; 1,

Aut(F,)T =
ut(F) (£[2k + 15 — 15 —2k; 1], £[1; 1; 2k; 2k + 1],

+[1;0;0;1] } for k> 1,

and

{£[11; 15; —8; —11], £[3;4; —2; —3], +[3; —1; 8; —3],

Aut(F,)~ =
ne) {£[2k + 1;2k + 2; —2k; =2k — 1], £[1; 1;0; — 1],

+[1;1;2; 3], £[1;0;0;1] }  for k=1,

31

+[1;1;0; —1], £[1;0;2; 1] } for k =1,

+[1;0;2k; —1]} for k > 1.

From Theorem 2.5, we can obtain the following result.

O

THEOREM 2.6. F., is ambiguous for D = k241, D =k*+2, D = k2+2k—1

and D = k? + 2k.

PrROOF. We proved in Theorem 2.5 that the set of improper automorphisms
of F, is non-empty, that is, Aut(F,)~ # @. So there exists at least one element
g € I with det g = —1 such that gF, = F,, that is, F, is improperly equivalent

to itself and hence is ambiguous.
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