## ON THE CYCLES OF INDEFINITE BINARY QUADRATIC FORMS AND CYCLES OF IDEALS III

## AHMET TEKCAN

Presented by Edward Bierstone, FRSC

ABSTRACT. Let  $\delta$  be a real quadratic irrational integer with trace  $t=\delta+\overline{\delta}$  and norm  $n=\delta.\overline{\delta}$ . Then for a real quadratic irrational  $\gamma\in\mathbb{Q}(\delta)$ , there are rational integers P and Q such that  $\gamma=\frac{P+\delta}{Q}$  with  $Q|(\delta+P)(\overline{\delta}+P)$ . So for each  $\gamma$ , we have an ideal  $I_{\underline{\gamma}}=[Q,P+\delta]$  and an indefinite quadratic form  $F_{\gamma}(x,y)=Q(x+\delta y)(x+\overline{\delta}y)$  of discriminant  $\Delta=t^2-4n$ . In this work, we derive some properties of  $I_{\gamma}$  and  $F_{\gamma}$  for some specific values of  $\delta$ .

RÉSUMÉ. Soit  $\delta$  un entier irrationel quadratique réel de trace  $t=\delta+\overline{\delta}$  et norme  $n=\delta.\overline{\delta}$ . Pour un irrationel quadratique réel  $\gamma\in\mathbb{Q}(\delta)$ , il existe des entiers rationels P et Q tels que  $\gamma=\frac{P+\delta}{Q}$  avec  $Q|(\delta+P)(\overline{\delta}+P)$ . Ainsi pour chaque  $\gamma$ , on a un idéal  $I_{\gamma}=[Q,P+\delta]$  et une forme quadratique indéfinie  $F_{\gamma}(x,y)=Q(x+\delta y)(x+\overline{\delta}y)$  de discriminant  $\Delta=t^2-4n$ . On déduit quelques propriétés de  $I_{\gamma}$  et  $F_{\gamma}$  pour certains valeurs de  $\delta$ .

1. Introduction. A real binary quadratic form (or just a form) F is a polynomial in two variables x, y of the type

(1.1) 
$$F = F(x, y) = ax^2 + bxy + cy^2$$

with real coefficients a,b,c. We denote F briefly by F=(a,b,c). The discriminant of F is defined by the formula  $b^2-4ac$  and is denoted by  $\Delta$ . A quadratic form F of discriminant  $\Delta$  is called indefinite if  $\Delta>0$ , and is called integral if and only if  $a,b,c\in\mathbb{Z}$ . An indefinite quadratic form F=(a,b,c) of discriminant  $\Delta$  is said to be reduced if

$$\left|\sqrt{\Delta} - 2|a|\right| < b < \sqrt{\Delta}.$$

Most properties of quadratic forms can be giving by the aid of extended modular group  $\overline{\Gamma}$  (see [10]). Gauss (1777–1855) defined the group action of  $\overline{\Gamma}$  on the set of forms as follows:

(1.3) 
$$gF(x,y) = (ar^2 + brs + cs^2)x^2 + (2art + bru + bts + 2csu)xy + (at^2 + btu + cu^2)y^2$$

Received by the editors on May 12, 2008.

AMS Subject Classification: Primary: 11E04, 11E08; secondary: 11E12, 11E16.

Keywords: quadratic forms, ideals, cycles of forms, cycles of ideals.

© Royal Society of Canada 2008.

for  $g=\binom{r\ s}{t\ u}=[r;s;t;u]\in\overline{\Gamma}$ , that is, gF is gotten from F by making the substitution  $x\to rx+tu$  and  $y\to sx+uy$ . Moreover  $\Delta(F)=\Delta(gF)$  for all  $g\in\overline{\Gamma}$ , that is, the action of  $\overline{\Gamma}$  on forms leaves the discriminant invariant. If F is indefinite or integral, then so is gF for all  $g\in\overline{\Gamma}$ . Let F and G be two forms. If there exists a  $g\in\overline{\Gamma}$  such that gF=G, then F and G are called equivalent. If det g=1, then F and G are called improperly equivalent and if det g=-1, then F and F is called ambiguous if it is improperly equivalent to itself. An element  $g\in\overline{\Gamma}$  is called an automorphism of F if gF=F. If det g=1, then g is called a proper automorphism of F and if det g=-1, then g is called an improper automorphism of F. Let F0 denote the set of proper automorphisms of F1 and let F1 denote the set of improper automorphisms of F3 and let F3 denote the set of improper automorphisms of F4 on binary quadratic forms see F3.

Let  $\rho(F)$  denotes the normalization (it means that replacing F by its normalization) of (c, -b, a). To be more explicit, we set

(1.4) 
$$\rho(F) = (c, -b + 2cr_i, cr_i^2 - br_i + a),$$

where

(1.5) 
$$r = r(F) = \begin{cases} \operatorname{sign}(c) \left\lfloor \frac{b}{2|c|} \right\rfloor & \text{for } |c| \ge \sqrt{\Delta}, \\ \operatorname{sign}(c) \left\lfloor \frac{b + \sqrt{\Delta}}{2|c|} \right\rfloor & \text{for } |c| < \sqrt{\Delta} \end{cases}$$

for  $i \geq 0$ . The number r is called the reducing number and the form  $\rho(F)$  is called the reduction of F. Further if F is reduced, then so is  $\rho(F)$ . In fact,  $\rho$  is a permutation of the set of all reduced indefinite forms. Let  $\tau(F) = \tau(a,b,c) = (-a,b,-c)$ . Then the cycle of F is the sequence  $(\tau(F)^i(G))$  for  $\tau(F)^i(F)$  is a reduced form with  $T(F)^i(F)$  which is equivalent to  $T(F)^i(F)$ . The cycle of  $T(F)^i(F)$  can be derived by the following theorem.

THEOREM 1.1. Let F = (a, b, c) be reduced indefinite quadratic form of discriminant  $\Delta$ . Then the cycle of F is a sequence  $F_0 \sim F_1 \sim F_2 \sim \cdots \sim F_{l-1}$  of length l, where  $F_0 = F = (a_0, b_0, c_0)$ ,

$$(1.6) s_i = |s(F_i)| = \left\lfloor \frac{b_i + \sqrt{\Delta}}{2|c_i|} \right\rfloor$$

and

$$(1.7) F_{i+1} = (a_{i+1}, b_{i+1}, c_{i+1}) = (|c_i|, -b_i + 2s_i|c_i|, -(a_i + b_i s_i + c_i s_i^2))$$

for  $1 \le i \le l - 2$  [1].

Mollin [4] considered the arithmetic of ideals in his book. Let  $D \neq 1$  be a square-free integer and let  $\Delta = \frac{4D}{r^2}$ , where r = 2 if  $D \equiv 1 \pmod{4}$  and r = 1,

otherwise. If we set  $\mathbb{K} = \mathbb{Q}(\sqrt{D})$ , then  $\mathbb{K}$  is called a quadratic number field of discriminant  $\Delta$ . Thus there is a one-to-one correspondence between quadratic fields and square-free rational integers  $D \neq 1$ .

A complex number is an algebraic integer if it is the root of a monic polynomial with coefficients in  $\mathbb{Z}$ . The set of all algebraic integers in the complex field  $\mathbb{C}$  is a ring which we denote by A. Then  $A \cap \mathbb{K} = O_{\Delta}$  is the ring of integers of the quadratic field  $\mathbb{K}$  of discriminant  $\Delta$ . Let  $I = [\alpha, \beta]$  denote the  $\mathbb{Z}$ -module  $\alpha\mathbb{Z} \oplus \beta\mathbb{Z}$  for  $\alpha, \beta \in \mathbb{K}$ , *i.e.*, the additive abelian group, with basis elements  $\alpha$  and  $\beta$  consisting of  $\{\alpha x + \beta y : x, y \in \mathbb{Z}\}$ . Then  $O_{\Delta} = [1, \frac{1+\sqrt{D}}{r}]$ . In this case  $w_{\Delta} = \frac{r-1+\sqrt{D}}{r}$  is called the principal surd. Every principal surd  $w_{\Delta} \in O_{\Delta}$  can be uniquely expressed as  $w_{\Delta} = x\alpha + y\beta$ , where  $x, y \in \mathbb{Z}$  and  $\alpha, \beta \in O_{\Delta}$ . We call  $\alpha, \beta$  an integral basis for  $\mathbb{K}$ . If  $\frac{\alpha\overline{\beta}-\beta\overline{\alpha}}{\sqrt{\Delta}} > 0$ , then  $\alpha$  and  $\beta$  are called ordered basis elements. Two basis of an ideal are ordered if and only if they are equivalent under an element of  $\overline{\Gamma}$ . If I has ordered basis elements, then we say that I is simply ordered. If I is ordered, then

$$F(x,y) = \frac{N(\alpha x + \beta y)}{N(I)}$$

is a quadratic form of discriminant  $\Delta$  (here N(x) denotes the norm of x). In this case we say that F belongs to I and write  $I \to F$ .

Conversely let us assume that

$$G(x,y) = Ax^2 + Bxy + Cy^2 = d(ax^2 + bxy + cy^2)$$

be a quadratic form, where  $d=\pm\gcd(A,B,C)$  and  $b^2-4ac=\Delta$ . If  $B^2-4AC>0$ , then we get d>0, and if  $B^2-4AC<0$ , then we choose d such that a>0. If

$$I = [\alpha, \beta] = \begin{cases} [a, \frac{b - \sqrt{\Delta}}{2}] & \text{for } a > 0, \\ [a, \frac{b - \sqrt{\Delta}}{2}]\sqrt{\Delta} & \text{for } a < 0 \text{ and } \Delta > 0, \end{cases}$$

then I is an ordered  $O_{\Delta}$ -ideal. Note that if a > 0, then I is primitive, and if a < 0, then  $\frac{I}{\sqrt{\Delta}}$  is primitive. Thus to every form G, there corresponds an ideal I to which G belongs and we write  $G \to I$ . Hence we have a correspondence between ideals and quadratic forms (for further details see [5–7]).

Theorem 1.2. If  $I=[a,b+cw_{\Delta}]$ , then I is a non-zero ideal of  $O_{\Delta}$  if and only if c|b,c|a and  $ac|N(b+cw_{\Delta})$  [4].

Let  $\delta$  denote a real quadratic irrational integer with trace  $t = \delta + \overline{\delta}$  and norm  $n = \delta \overline{\delta}$ . Given a real quadratic irrational  $\gamma \in \mathbb{Q}(\delta)$ , there are rational integers P and Q such that  $\gamma = \frac{P+\delta}{Q}$  with  $Q|(\delta+P)(\overline{\delta}+P)$ . Hence for each

$$\gamma = \frac{P + \delta}{Q}$$

there is a corresponding  $\mathbb{Z}$ -module

$$(1.9) I_{\gamma} = [Q, P + \delta]$$

(in fact, this module is an ideal by Theorem 1.2) and an indefinite quadratic form

(1.10) 
$$F_{\gamma}(x,y) = Q(x+\delta y)(x+\overline{\delta}y)$$

of discriminant  $\Delta = t^2 - 4n$ . The ideal  $I_{\gamma}$  in (1.9) is said to be reduced if and only if

$$(1.11) P + \delta > Q \text{ and } -Q < P + \overline{\delta} < 0$$

and is said to be ambiguous if and only if it contains both  $\frac{P+\delta}{Q}$  and  $\frac{P+\overline{\delta}}{Q}$  so if and only if  $\frac{2P}{Q} \in \mathbb{Z}$ .

Let  $[m_0; \overline{m_1, m_2, \dots, m_{l-1}}]$  denote continued fraction expansion of  $\gamma$  with period length l = l(I), where

(1.12) 
$$m_i = \left\lfloor \frac{P_i + \delta}{Q_i} \right\rfloor, \quad P_{i+1} = m_i Q_i - P_i \quad \text{and} \quad Q_{i+1} = \frac{\delta^2 - P_{i+1}^2}{Q_i}$$

for  $i \geq 0$ . From the continued fraction factoring algorithm we get all reduced ideals equivalent to a given reduced ideal  $I_{\gamma}$ , *i.e.*, in the continued fraction expansion of  $\gamma$  we have  $I_{\gamma} = I_{\gamma}^{0} \sim I_{\gamma}^{1} \sim \cdots \sim I_{\gamma}^{l-1}$ . Finally  $I_{\gamma}^{l} = I_{\gamma}^{0}$  for a complete cycle of reduced ideals of length l(I) = l.

2. Quadratic ideals and quadratic forms. In [8], [9], and [11], we derived some properties of quadratic irrationals  $\gamma = \frac{P+\delta}{Q}$ , quadratic ideals  $I_{\gamma}$  and indefinite quadratic forms  $F_{\gamma}$  in (1.8), (1.9) and (1.10), respectively. In this section we consider the same problem for some specific values of  $\delta = \sqrt{D}$ , where  $D \neq 1$  is a square-free positive integer. Now let  $\gamma = -k + \sqrt{D}$  for an integer  $k \geq 1$ . Then

$$(2.1) I_{\gamma} = [1, -k + \sqrt{D}]$$

is a quadratic ideal, and

$$(2.2) F_{\gamma} = (1, 2k, k^2 - D)$$

is an indefinite binary quadratic form of discriminant  $\Delta = 4D$ .

2.1. Quadratic ideals. In this subsection, we will consider some properties of  $\gamma$  and  $I_{\gamma}$  in four cases:  $D = k^2 + 1$ ,  $D = k^2 + 2$ ,  $D = k^2 + 2k - 1$  and  $D = k^2 + 2k$ .

Theorem 2.1. Let  $I_{\gamma}$  be the ideal in (2.1).

- (1) If  $D = k^2 + 1$ , then the continued fraction expansion of  $\gamma$  is  $[0; \overline{2k}]$  and the cycle of  $I_{\gamma}$  is  $I_{\gamma}^0 = [1, -k + \sqrt{D}] \sim I_{\gamma}^1 = [1, k + \sqrt{D}]$  of length 2;
- (2) If  $D = k^2 + 2$ , then the continued fraction expansion of  $\gamma$  is  $[0; \overline{k, 2k}]$  and the cycle of  $I_{\gamma}$  is  $I_{\gamma}^0 = [1, -k + \sqrt{D}] \sim I_{\gamma}^1 = [2, k + \sqrt{D}] \sim I_{\gamma}^2 = [1, k + \sqrt{D}]$  of length 3;
- (3) If  $D = k^2 + 2k 1$ , then the continued fraction expansion of  $\gamma$  is  $[0; \overline{1, k 1, 1, 2k}]$  and the cycle of  $I_{\gamma}$  is  $I_{\gamma}^{0} = [1, -k + \sqrt{D}] \sim I_{\gamma}^{1} = [2k 1, k + \sqrt{D}] \sim I_{\gamma}^{2} = [2, k 1 + \sqrt{D}] \sim I_{\gamma}^{3} = [2k 1, k 1 + \sqrt{D}] \sim I_{\gamma}^{4} = [1, k + \sqrt{D}]$  of length 5;
- (4) If  $D = k^2 + 2k$ , then the continued fraction expansion of  $\gamma$  is  $[0; \overline{1, 2k}]$  and the cycle of  $I_{\gamma}$  is  $I_{\gamma}^0 = [1, -k + \sqrt{D}] \sim I_{\gamma}^1 = [2k, k + \sqrt{D}] \sim I_{\gamma}^2 = [1, k + \sqrt{D}]$  of length 3.
- PROOF. (1) Let  $D=k^2+1$ . Then  $I_{\gamma}=I_{\gamma}^0=[1,-k+\sqrt{k^2+1}]$ . So we have from (1.12)  $m_0=0$  and hence  $P_1=k$  and  $Q_1=1$ . For i=1, we have  $m_1=2k$  and hence  $P_2=k=P_1$  and  $Q_2=1=Q_1$ . For i=2, we have  $m_2=2k=m_1$ . Therefore the continued fraction expansion of  $\gamma$  is  $[0;\overline{2k}]$  and the cycle of  $I_{\gamma}$  is  $I_{\gamma}^0=[1,-k+\sqrt{D}]\sim I_{\gamma}^1=[1,k+\sqrt{D}]$  of length 2.
- (2) Let  $D=k^2+2$ . Then  $I_{\gamma}=I_{\gamma}^0=[1,-k+\sqrt{k^2+2}]$ . We have  $m_0=0$  and so  $P_1=k$  and  $Q_1=2$ . For i=1, we have  $m_1=k$  and hence  $P_2=k$  and  $Q_2=1$ . For i=2, we have  $m_2=2k$  and hence  $P_3=k=P_1$  and  $Q_3=2=Q_1$ . For i=3, we have  $m_3=k=m_1$ . Therefore the continued fraction expansion of  $\gamma$  is  $[0;\overline{k,2k}]$ , and the cycle of  $I_{\gamma}$  is  $I_{\gamma}^0=[1,-k+\sqrt{D}]\sim I_{\gamma}^1=[2,k+\sqrt{D}]\sim I_{\gamma}^2=[1,k+\sqrt{D}]$  of length 3.
- (3) Let  $D = k^2 + 2k 1$ . Then  $I_{\gamma} = I_{\gamma}^0 = [1, -k + \sqrt{k^2 + 2k 1}]$ . Hence we have  $m_0 = 0$ , and so  $P_1 = k$  and  $Q_1 = 2k 1$ . For i = 1, we have  $m_1 = 1$  and hence  $P_2 = k 1$  and  $Q_2 = 2$ . For i = 2, we have  $m_2 = k 1$  and hence  $P_3 = k 1$  and  $Q_3 = 2k 1$ . For i = 3, we have  $m_3 = 1$  and hence  $P_4 = k$  and  $Q_4 = 1$ . For i = 4, we have  $m_4 = 2k$  and hence  $P_5 = k = P_1$  and  $Q_5 = 2k 1 = Q_1$ . For i = 5, we have  $m_5 = 1 = m_1$ . Therefore the continued fraction expansion of  $\gamma$  is  $[0; \overline{1, k 1, 1, 2k}]$  and the cycle of  $I_{\gamma}$  is  $I_{\gamma}^0 = [1, -k + \sqrt{D}] \sim I_{\gamma}^1 = [2k 1, k + \sqrt{D}] \sim I_{\gamma}^2 = [2, k 1 + \sqrt{D}] \sim I_{\gamma}^3 = [2k 1, k 1 + \sqrt{D}] \sim I_{\gamma}^4 = [1, k + \sqrt{D}]$  of length 5.
- (4) Let  $D=k^2+2k$ . Then  $I_{\gamma}=I_{\gamma}^0=[1,-k+\sqrt{k^2+2k}]$  and hence  $m_0=0$  and  $P_1=k$  and  $Q_1=2k$ . For i=1, we have  $m_1=1$  and hence  $P_2=k$  and  $Q_2=1$ . For i=2, we have  $m_2=2k$  and hence  $P_3=k=P_1$  and  $Q_3=2k=Q_1$ . For i=3, we have  $m_3=1=m_1$ . Therefore the continued fraction expansion of  $\gamma$  is  $[0;\overline{1,2k}]$  and the cycle of  $I_{\gamma}$  is  $I_{\gamma}^0=[1,-k+\sqrt{D}]\sim I_{\gamma}^1=[2k,k+\sqrt{D}]\sim I_{\gamma}^2=[1,k+\sqrt{D}]$  of length 3.

Example 2.1. Let k = 6.

- (1) If  $D=6^2+1=37$ , then the continued fraction expansion of  $\gamma=-6+\sqrt{37}$  is  $[0;\overline{12}]$  and the cycle of  $I_{\gamma}$  is  $I_{\gamma}^0=[1,-6+\sqrt{37}]\sim I_{\gamma}^1=[1,6+\sqrt{37}]$ .
- (2) If  $D = 6^2 + 2 = 38$ , then the continued fraction expansion of  $\gamma = -6 + \sqrt{38}$  is  $[0; \overline{6,12}]$  and the cycle of  $I_{\gamma}$  is  $I_{\gamma}^0 = [1, -6 + \sqrt{38}] \sim I_{\gamma}^1 = [2, 6 + \sqrt{38}] \sim I_{\gamma}^2 = [1, 6 + \sqrt{38}]$ .
- (3) If  $D = 6^2 + 2.6 1 = 47$ , then the continued fraction expansion of  $\gamma = -6 + \sqrt{47}$  is  $[0; \overline{1, 5, 1, 12}]$  and the cycle of  $I_{\gamma}$  is  $I_{\gamma}^0 = [1, -6 + \sqrt{47}] \sim I_{\gamma}^1 = [11, 6 + \sqrt{47}] \sim I_{\gamma}^2 = [2, 5 + \sqrt{47}] \sim I_{\gamma}^3 = [11, 5 + \sqrt{47}] \sim I_{\gamma}^4 = [1, 6 + \sqrt{47}]$ .
- (4) If  $D = 6^2 + 2.6 = 48$ , then the continued fraction expansion of  $\gamma = -6 + \sqrt{48}$  is  $[0; \overline{1,12}]$  and the cycle of  $I_{\gamma}$  is  $I_{\gamma}^0 = [1, -6 + \sqrt{48}] \sim I_{\gamma}^1 = [12, 6 + \sqrt{48}] \sim I_{\gamma}^2 = [1, 6 + \sqrt{48}]$ .

Theorem 2.2. The ideals  $I_{\gamma}$  in Theorem 2.1 are not reduced.

PROOF. Let  $D=k^2+1$ . Then  $I_{\gamma}=[1,-k+\sqrt{k^2+1}].$  Recall that  $k\geq 1,$  so 2k>0. Hence

$$2k + k^2 + 1 > k^2 + 1 \Leftrightarrow (k+1)^2 > k^2 + 1 \Leftrightarrow k+1 > \sqrt{k+1} \Leftrightarrow 1 > -k + \sqrt{k+1}$$

which is in contradiction to (1.11). So  $I_{\gamma}$  is not reduced. The other cases can be dealt with similarly.

2.2. Quadratic forms. In this subsection, we will consider some properties of indefinite binary quadratic forms  $F_{\gamma}$ . First we consider their reducibility.

Theorem 2.3.  $F_{\gamma}$  is reduced if and only if  $k^2 < D < k^2 + 2k + 1$ .

PROOF. Let  $F_{\gamma}$  be reduced. Then by (1.2) we have

$$\left|\sqrt{\Delta} - 2|a|\right| < b < \sqrt{\Delta} \Leftrightarrow \left|\sqrt{4D} - 2\right| < 2k < \sqrt{4D} \Leftrightarrow \sqrt{D} - 1 < k < \sqrt{D}.$$

Hence it is clear that  $k^2 < D$  and  $D < (k+1)^2$ . So  $k^2 < D < k^2 + 2k + 1$ . Conversely let  $k^2 < D < k^2 + 2k + 1$ . Then  $k < \sqrt{D}$  and  $\sqrt{D} < k + 1$ . So

$$|\sqrt{4D} - 2| < 2k < \sqrt{4D} \Leftrightarrow \left|\sqrt{\Delta} - 2|a|\right| < b < \sqrt{\Delta}$$

and hence  $F_{\gamma}$  is reduced by (1.2).

Now we can give the following theorem concerning the cycles of  $F_{\gamma}$  in four cases:  $D = k^2 + 1$ ,  $D = k^2 + 2$ ,  $D = k^2 + 2k - 1$  and  $D = k^2 + 2k$ . Note that for these values of D,  $F_{\gamma}$  is reduced by Theorem 2.3.

Theorem 2.4. Let  $F_{\gamma}$  be the quadratic form in (2.2).

(1) If  $D = k^2 + 1$ , then the cycle of  $F_{\gamma}$  is  $F_{\gamma}^{0'} = (1, 2k, -1)$  of length 1.

(2) If  $D=k^2+2$ , then the cycle of  $F_{\gamma}$  is  $F_{\gamma}^0=(1,2k,-2)\sim F_{\gamma}^1=(2,2k,-1)$  of length 2.

- (3) If  $D = k^2 + 2k 1$ , then the cycle of  $F_{\gamma}$  is  $F_{\gamma}^0 = (1, 2k, -2k + 1) \sim F_{\gamma}^1 = (2k 1, 2k 2, -2) \sim F_{\gamma}^2 = (2, 2k 2, -2k + 1) \sim F_{\gamma}^3 = (2k 1, 2k, -1)$  of
- (4) If  $D = k^2 + 2k$ , then the cycle of  $F_{\gamma}$  is  $F_{\gamma}^0 = (1, 2k, -2k) \sim F_{\gamma}^1 = (2k, 2k, -1)$ of length 2.

PROOF. (1) Let  $D=k^2+1$ . Then  $F_{\gamma}=F_{\gamma}^0=(1,2k,-1)$ . Applying (1.6), we get  $s_0=2k$  and hence by (1.7), we get  $F_{\gamma}^1=(a_1,b_1,c_1)=(1,2k,-1)=F_{\gamma}^0$ . Therefore the cycle of  $F_{\gamma}$  is completed and is  $F_{\gamma}^0=(1,2k,-1)$  of length 1. (2) Let  $D=k^2+2$ . Then  $F_{\gamma}=F_{\gamma}^0=(1,2k,-2)$  and hence  $s_0=k$ . So  $F_{\gamma}^1=(a_1,b_1,c_1)=(2,2k,-1)$ . Similarly we find that  $s_1=2k$  and  $F_{\gamma}^2=(a_2,b_2,c_2)=(1,2k,-2)=F_{\gamma}^0$ . Therefore the cycle of  $F_{\gamma}$  is completed and is  $F_{\gamma}^0=(1,2k,-2)\sim F_{\gamma}^1=(2,2k,-1)$  of length 2. (3) Let  $k^2+2k-1$ . Then  $F_{\gamma}=F_{\gamma}^0=(1,2k,-2k+1)$  and hence  $s_0=1$ . So  $F_{\gamma}^1=(a_1,b_1,c_1)=(2k-1,2k-2,-2)$ . Similarly we can obtain  $s_1=k-1$  and  $F_{\gamma}^2=(a_2,b_2,c_3)=(2,2k-2,1-2k)$ . Also  $s_2=1$  and  $F_{\gamma}^3=(a_2,b_2,c_3)=(2,2k-2,1-2k)$ .

and  $F_{\gamma}^{2} = (a_{1}, b_{1}, c_{1}) - (2k - 1, 2k - 2, 1 - 2k)$ . Also  $s_{2} = 1$  and  $F_{\gamma}^{3} = (a_{3}, b_{3}, c_{3}) = (2k - 1, 2k, -1)$ . Finally  $s_{3} = 2k$  and  $F_{\gamma}^{4} = (a_{4}, b_{4}, c_{4}) = (1, 2k, 1 - 2k) = F_{\gamma}^{0}$ . Therefore the cycle of  $F_{\gamma}$  is completed and is  $F_{\gamma}^{0} = (1, 2k, -2k + 1) \sim F_{\gamma}^{1} = (2k - 1, 2k - 2, -2) \sim F_{\gamma}^{2} = (2, 2k - 2, -2k + 1) \sim F_{\gamma}^{3} = (2k - 1, 2k, -1)$  of length 4.

(4) Let  $D = k^2 + 2k$ . Then  $F_{\gamma} = F_{\gamma}^0 = (1, 2k, -2k)$  and hence  $s_0 = 1$ . So  $F_{\gamma}^1 = (a_1, b_1, c_1) = (2k, 2k, -1)$ . For i = 1 we have  $s_1 = 2k$  and hence  $F_{\gamma}^2 = (a_2, b_2, c_2) = (1, 2k, -2k) = F_{\gamma}^0$ . Therefore the cycle of  $F_{\gamma}$  is completed and is  $F_{\gamma}^0 = (1, 2k, -2k) \sim F_{\gamma}^1 = (2k, 2k, -1)$  of length 2.

Example 2.2. Let k = 7.

- (1) If  $D = 7^2 + 1 = 50$ , then the cycle of  $F_{\gamma} = (1, 14, -1)$  is  $F_{\gamma}^0 = (1, 14, -1)$  of length 1.
- (2) If  $D = 7^2 + 2 = 51$ , then the cycle of  $F_{\gamma} = (1, 14, -2)$  is  $F_{\gamma}^0 = (1, 14, -2) \sim$
- $F_{\gamma}^{1} = (2, 14, -1) \text{ of length 2.}$ (3) If  $D = 7^{2} + 2.7 1 = 62$ , then the cycle of  $F_{\gamma} = (1, 14, -13)$  is  $F_{\gamma}^{0} = (1, 14, -13) \sim F_{\gamma}^{1} = (13, 12, -2) \sim F_{\gamma}^{2} = (2, 12, -13) \sim F_{\gamma}^{3} = (13, 14, -1)$  of
- (4) If  $D = 7^2 + 2.7 = 63$ , then the cycle of  $F_{\gamma} = (1, 14, -14)$  is  $F_{\gamma}^0 = (1, 14, -14) \sim$  $F_{\gamma}^{1} = (14, 14, -1)$  of length 2.

Now we consider the proper and improper automorphisms of  $F_{\gamma}$ .

THEOREM 2.5. Let  $F_{\gamma}$  be the quadratic form in (2.2).

(1) If  $D = k^2 + 1$ , then

# Aut
$$(F_{\gamma})^+ = \begin{cases} 6 & \text{if } k = 1, 2, \\ 2 & \text{if } k > 2 \end{cases}$$

and

# Aut
$$(F_{\gamma})^- = \begin{cases} 8 & \text{if } k = 1, \\ 4 & \text{if } k > 1. \end{cases}$$

(2) If  $D = k^2 + 2$ , then

# Aut
$$(F_{\gamma})^+ = \begin{cases} 10 & \text{if } k = 1, \\ 6 & \text{if } k = 2, 3, \\ 2 & \text{if } k > 3, \end{cases}$$

and

# Aut
$$(F_{\gamma})^{-}$$
 = 
$$\begin{cases} 10 & \text{if } k = 1, \\ 6 & \text{if } k = 2, \\ 4 & \text{if } k > 2. \end{cases}$$

(3) If  $D = k^2 + 2k - 1$ , then

# Aut
$$(F_{\gamma})^+ = \begin{cases} 6 & \text{if } k = 1, 2, \\ 2 & \text{if } k > 2, \end{cases}$$

and

# Aut
$$(F_{\gamma})^- = \begin{cases} 8 & \text{if } k = 1, \\ 4 & \text{if } k > 1. \end{cases}$$

(4) If  $D = k^2 + 2k$ , then

$$\# \operatorname{Aut}(F_{\gamma})^{+} = \# \operatorname{Aut}(F_{\gamma})^{-} = \begin{cases} 10 & \text{if } k = 1, \\ 6 & \text{if } k > 1. \end{cases}$$

PROOF. (1): Let k = 1. Then  $F_{\gamma} = (1, 2, -1)$ . The system of equations

$$r^{2} + 2rs - s^{2} = 1,$$
  

$$2rt + 2ru + 2ts - 2su = 2,$$
  

$$t^{2} + 2tu - u^{2} = -1,$$

has a solution for  $g = \pm[5; -2; -2; 1], \pm[1; 2; 2; 5], \pm[1; 0; 0; 1]$ . So

$$\operatorname{Aut}(F_{\gamma})^{+} = \{\pm[5;-2;-2;1], \pm[1;2;2;5], \pm[1;0;0;1]\}$$

and hence  $\# \operatorname{Aut}(F_{\gamma})^{+} = 6$ . Similarly we find that

$$Aut(F_{\gamma})^{+} = \{ \pm [17; -4; -4; 1], \pm [1; 4; 4; 17], \pm [1; 0; 0; 1] \}$$

for k = 2 and Aut $(F_{\gamma})^+ = \{\pm [1; 0; 0; 1]\}$  for all k > 2.

Now we consider the improper automorphisms. The system of equations

$$r^{2} + 2rs - s^{2} = 1,$$
  

$$2rt + 2ru + 2ts - 2su = 2,$$
  

$$t^{2} + 2tu - u^{2} = -1.$$

has a solution for

$$g = \pm [5; 12; -2; -5], \pm [5; -2; 12; -5], \pm [1; 2; 0; -1], \pm [1; 0; 2; -1],$$

so

$$Aut(F_{\gamma})^{-} = \{ \pm [5; 12; -2; -5], \pm [5; -2; 12; -5], \pm [1; 2; 0; -1], \pm [1; 0; 2; -1] \}$$

and hence  $\# \operatorname{Aut}(F_{\gamma})^{-} = 8$ . Similarly we find that

$$\operatorname{Aut}(F_{\gamma})^{-} = \{ \pm [1; 2k; 0; -1], \pm [1; 0; 2k; -1] \}$$

for every k > 1.

(2)-(4): With the same argument we find that if  $D = k^2 + 2$ , then

$$\operatorname{Aut}(F_{\gamma})^{+} \begin{cases} \{\pm[11;-4;-8;3],\pm[3;4;8;11],\pm[3;-1;-2;1], \\ \pm[1;2;2;3],\pm[1;0;0;1] \} & \text{for } k=1, \\ \{\pm[9;-2;-4;1],\pm[1;2;4;9],\pm[1;0;0;1] \} & \text{for } k=2, \\ \{\pm[19;-3;-6;1],\pm[1;3;6;19],\pm[1;0;0;1] \} & \text{for } k=3, \\ \{\pm[1;0;0;1] \} & \text{for } k>3, \end{cases}$$

and

$$\operatorname{Aut}(F_{\gamma})^{-} = \begin{cases} \{\pm[11;15;-8;-11], \pm[3;4;-2;-3], \pm[3;-1;8;-3] \\ & \pm[1;1;0;-1], \pm[1;0;2;-1] \} \\ \{\pm[9;20;-4;-9], \pm[1;2;0;-1], \pm[1;0;4;-1] \} & \text{for } k=1, \\ \{\pm[1;k;0;-1], \pm[1;0;2k;-1] \} & \text{for } k>2. \end{cases}$$

If  $D = k^2 + 2k - 1$ , then

$$\operatorname{Aut}(F_{\gamma})^{+} = \begin{cases} \{\pm[5; -2; -2; 1], \pm[1; 2; 2; 5], \pm[1; 0; 0; 1]\} & \text{for } k = 1, \\ \{\pm[14; -3; -9; 2], \pm[2; 3; 9; 14], \pm[1; 0; 0; 1]\} & \text{for } k = 2, \\ \{\pm[1; 0; 0; 1]\} & \text{for } k > 2, \end{cases}$$

and

$$\operatorname{Aut}(F_{\gamma})^{-} = \begin{cases} \{\pm[5;12;-2;-5], \pm[5;-2;12;-5], \\ \pm[1;2;0;-1], \pm[1;0;2;-1] \} & \text{for } k = 1, \\ \{\pm[k;k+1;1-k;-k], \pm[1;0;2k;-1] \} & \text{for } k > 1. \end{cases}$$

Finally if  $D = k^2 + 2k$ , then

$$\operatorname{Aut}(F_{\gamma})^{+} = \begin{cases} \{\pm[11; -4; -8; 3], \pm[3; 4; 8; 11], \pm[3; -1; 2; 1], \\ & \pm[1; 1; 2; 3], \pm[1; 0; 0; 1] \} \\ \{\pm[2k+1; -1; -2k; 1], \pm[1; 1; 2k; 2k+1], \\ & \pm[1; 0; 0; 1] \} \end{cases} \quad \text{for } k > 1,$$

and

$$\operatorname{Aut}(F_{\gamma})^{-} = \begin{cases} \{\pm[11;15;-8;-11], \pm[3;4;-2;-3], \pm[3;-1;8;-3], \\ \pm[1;1;0;-1], \pm[1;0;2;-1] \} & \text{for } k=1, \\ \{\pm[2k+1;2k+2;-2k;-2k-1], \pm[1;1;0;-1], \\ \pm[1;0;2k;-1] \} & \text{for } k>1. \end{cases}$$

From Theorem 2.5, we can obtain the following result.

Theorem 2.6.  $F_{\gamma}$  is ambiguous for  $D=k^2+1,\ D=k^2+2,\ D=k^2+2k-1$  and  $D=k^2+2k$ .

PROOF. We proved in Theorem 2.5 that the set of improper automorphisms of  $F_{\underline{\gamma}}$  is non-empty, that is,  $\operatorname{Aut}(F_{\gamma})^- \neq \emptyset$ . So there exists at least one element  $g \in \overline{\Gamma}$  with  $\det g = -1$  such that  $gF_{\gamma} = F_{\gamma}$ , that is,  $F_{\gamma}$  is improperly equivalent to itself and hence is ambiguous.

## REFERENCES

- J. Buchmann and U. Vollmer, Binary Quadratic Forms: An Algorithmic Approach. Springer-Verlag, Berlin, Heidelberg, 2007.
- 2. D. A. Buell, Binary Quadratic Forms, Clasical Theory and Modern Computations. Springer-Verlag, New York, 1989.
- 3. D. E. Flath, Introduction to Number Theory. Wiley, 1989.
- 4. R. A. Mollin, Quadratics. CRS Press, Boca Raton–New York–London–Tokyo, 1996.
- Jacobi symbols, ambiguous ideals, and continued fractions. Acta Arith. 85 (1998), 331–349.
- R. A. Mollin and K. Cheng, Palindromy and Ambiguous Ideals Revisited. J. Number Theory 74 (1999), 98–110.
- R. A. Mollin and A. J. Poorten, A Note on Symmetry and Ambiguity. Bull. Austral. Math. Soc. 51 (1995), 215–233.
- A. Tekcan, Cycles of Indefinite Quadratic Forms and Cycles of Ideals. Hacet. J. Math. Stat. 35 (2006), 63–70.
- 9. \_\_\_\_\_, On the Cycles of Indefinite Quadratic Forms and Cycles of Ideals II. Accepted by South East Asian Bulletin of Maths.

Г

- A. Tekcan and O. Bizim, The Connection Between Quadratic Forms and the Extended Modular Group. Math. Bohem. 128 (2003), 225–236.
- 11. A. Tekcan and H. Özden, On the Quadratic Irrationals, Quadratic Ideals and Indefinite Quadratic Forms. Irish Math. Soc. Bull. 58 (2006), 69–79.

Uludag University
Faculty of Science
Department of Mathematics
Görükle, Bursa
Turkey

 $email:\ tekcan@uludag.edu.tr$ 

 $url:\ http://matematik.uludag.edu.tr/AhmetTekcan.htm$