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ON THE CYCLES OF INDEFINITE BINARY QUADRATIC

FORMS AND CYCLES OF IDEALS III
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Abstract. Let δ be a real quadratic irrational integer with trace t =
δ+δ and norm n = δ.δ. Then for a real quadratic irrational γ ∈ Q(δ), there
are rational integers P and Q such that γ = P+δ

Q
with Q|(δ + P )(δ + P ).

So for each γ, we have an ideal Iγ = [Q, P + δ] and an indefinite quadratic
form Fγ(x, y) = Q(x + δy)(x + δy) of discriminant ∆ = t2 − 4n. In this

work, we derive some properties of Iγ and Fγ for some specific values of δ.

Résumé. Soit δ un entier irrationel quadratique réel de trace t = δ + δ

et norme n = δ.δ. Pour un irrationel quadratique réel γ ∈ Q(δ), il existe

des entiers rationels P et Q tels que γ = P+δ
Q

avec Q|(δ +P )(δ +P ). Ainsi

pour chaque γ, on a un idéal Iγ = [Q, P + δ] et une forme quadratique
indéfinie Fγ(x, y) = Q(x + δy)(x + δy) de discriminant ∆ = t2 − 4n. On
déduit quelques propriétés de Iγ et Fγ pour certains valeurs de δ.

1. Introduction. A real binary quadratic form (or just a form) F is a
polynomial in two variables x, y of the type

(1.1) F = F (x, y) = ax2 + bxy + cy2

with real coefficients a, b, c. We denote F briefly by F = (a, b, c). The discrimi-
nant of F is defined by the formula b2 − 4ac and is denoted by ∆. A quadratic
form F of discriminant ∆ is called indefinite if ∆ > 0, and is called integral if
and only if a, b, c ∈ Z. An indefinite quadratic form F = (a, b, c) of discriminant
∆ is said to be reduced if

(1.2)
∣

∣

√
∆ − 2|a|

∣

∣ < b <
√

∆.

Most properties of quadratic forms can be giving by the aid of extended
modular group Γ (see [10]). Gauss (1777–1855) defined the group action of Γ on
the set of forms as follows:

gF (x, y) = (ar2 + brs + cs2)x2 + (2art + bru + bts + 2csu)xy

+ (at2 + btu + cu2)y2

(1.3)
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for g =
(

r s
t u

)

= [r; s; t;u] ∈ Γ, that is, gF is gotten from F by making the
substitution x → rx + tu and y → sx + uy. Moreover ∆(F ) = ∆(gF ) for all
g ∈ Γ, that is, the action of Γ on forms leaves the discriminant invariant. If F

is indefinite or integral, then so is gF for all g ∈ Γ. Let F and G be two forms.
If there exists a g ∈ Γ such that gF = G, then F and G are called equivalent. If
det g = 1, then F and G are called properly equivalent and if det g = −1, then
F and G are called improperly equivalent. A form F is called ambiguous if it
is improperly equivalent to itself. An element g ∈ Γ is called an automorphism
of F if gF = F . If det g = 1, then g is called a proper automorphism of F and
if det g = −1, then g is called an improper automorphism of F . Let Aut(F )+

denote the set of proper automorphisms of F and let Aut(F )− denote the set
of improper automorphisms of F (for further details on binary quadratic forms
see [1–3]).

Let ρ(F ) denotes the normalization (it means that replacing F by its normal-
ization) of (c,−b, a). To be more explicit, we set

(1.4) ρ(F ) = (c,−b + 2cri, cr
2
i − bri + a),

where

(1.5) r = r(F ) =

{

sign(c)
⌊

b
2|c|

⌋

for |c| ≥
√

∆,

sign(c)
⌊

b+
√

∆

2|c|
⌋

for |c| <
√

∆

for i ≥ 0. The number r is called the reducing number and the form ρ(F ) is
called the reduction of F . Further if F is reduced, then so is ρ(F ). In fact, ρ is
a permutation of the set of all reduced indefinite forms. Let τ(F ) = τ(a, b, c) =
(−a, b,−c). Then the cycle of F is the sequence

(

(τρ)i(G)
)

for i ∈ Z, where
G = (A,B,C) is a reduced form with A > 0 which is equivalent to F . The cycle
of F can be derived by the following theorem.

Theorem 1.1. Let F = (a, b, c) be reduced indefinite quadratic form of
discriminant ∆. Then the cycle of F is a sequence F0 ∼ F1 ∼ F2 ∼ · · · ∼ Fl−1

of length l, where F0 = F = (a0, b0, c0),

(1.6) si = |s(Fi)| =
⌊bi +

√
∆

2|ci|
⌋

and

(1.7) Fi+1 = (ai+1, bi+1, ci+1) =
(

|ci|,−bi + 2si|ci|,−(ai + bisi + cis
2
i )

)

for 1 ≤ i ≤ l − 2 [1].

Mollin [4] considered the arithmetic of ideals in his book. Let D 6= 1 be a
square-free integer and let ∆ = 4D

r2 , where r = 2 if D ≡ 1 (mod 4) and r = 1,
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otherwise. If we set K = Q(
√

D), then K is called a quadratic number field of
discriminant ∆. Thus there is a one-to-one correspondence between quadratic
fields and square-free rational integers D 6= 1.

A complex number is an algebraic integer if it is the root of a monic polynomial
with coefficients in Z. The set of all algebraic integers in the complex field C

is a ring which we denote by A. Then A ∩ K = O∆ is the ring of integers of
the quadratic field K of discriminant ∆. Let I = [α, β] denote the Z-module
αZ ⊕ βZ for α, β ∈ K, i.e., the additive abelian group, with basis elements α

and β consisting of {αx + βy : x, y ∈ Z}. Then O∆ = [1, 1+
√

D
r

]. In this case

w∆ = r−1+
√

D
r

is called the principal surd. Every principal surd w∆ ∈ O∆ can
be uniquely expressed as w∆ = xα + yβ, where x, y ∈ Z and α, β ∈ O∆. We call

α, β an integral basis for K. If αβ−βα√
∆

> 0, then α and β are called ordered basis

elements. Two basis of an ideal are ordered if and only if they are equivalent
under an element of Γ. If I has ordered basis elements, then we say that I is
simply ordered. If I is ordered, then

F (x, y) =
N(αx + βy)

N(I)

is a quadratic form of discriminant ∆ (here N(x) denotes the norm of x). In
this case we say that F belongs to I and write I → F .

Conversely let us assume that

G(x, y) = Ax2 + Bxy + Cy2 = d(ax2 + bxy + cy2)

be a quadratic form, where d = ± gcd(A,B,C) and b2−4ac = ∆. If B2−4AC >

0, then we get d > 0, and if B2 − 4AC < 0, then we choose d such that a > 0. If

I = [α, β] =

{

[a, b−
√

∆

2
] for a > 0,

[a, b−
√

∆

2
]
√

∆ for a < 0 and ∆ > 0,

then I is an ordered O∆-ideal. Note that if a > 0, then I is primitive, and if
a < 0, then I√

∆
is primitive. Thus to every form G, there corresponds an ideal

I to which G belongs and we write G → I. Hence we have a correspondence
between ideals and quadratic forms (for further details see [5–7]).

Theorem 1.2. If I = [a, b + cw∆], then I is a non-zero ideal of O∆ if and
only if c|b, c|a and ac|N(b + cw∆) [4].

Let δ denote a real quadratic irrational integer with trace t = δ + δ and norm
n = δδ. Given a real quadratic irrational γ ∈ Q(δ), there are rational integers P

and Q such that γ = P+δ
Q

with Q|(δ + P )(δ + P ). Hence for each

(1.8) γ =
P + δ

Q
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there is a corresponding Z-module

(1.9) Iγ = [Q, P + δ]

(in fact, this module is an ideal by Theorem 1.2) and an indefinite quadratic
form

(1.10) Fγ(x, y) = Q(x + δy)(x + δy)

of discriminant ∆ = t2 − 4n. The ideal Iγ in (1.9) is said to be reduced if and
only if

(1.11) P + δ > Q and − Q < P + δ < 0

and is said to be ambiguous if and only if it contains both P+δ
Q

and P+δ
Q

so if

and only if 2P
Q

∈ Z.

Let [m0;m1,m2, . . . ,ml−1] denote continued fraction expansion of γ with pe-
riod length l = l(I), where

(1.12) mi =
⌊Pi + δ

Qi

⌋

, Pi+1 = miQi − Pi and Qi+1 =
δ2 − P 2

i+1

Qi

for i ≥ 0. From the continued fraction factoring algorithm we get all reduced
ideals equivalent to a given reduced ideal Iγ , i.e., in the continued fraction ex-
pansion of γ we have Iγ = I0

γ ∼ I1
γ ∼ · · · ∼ I l−1

γ . Finally I l
γ = I0

γ for a complete
cycle of reduced ideals of length l(I) = l.

2. Quadratic ideals and quadratic forms. In [8], [9], and [11], we de-
rived some properties of quadratic irrationals γ = P+δ

Q
, quadratic ideals Iγ and

indefinite quadratic forms Fγ in (1.8), (1.9) and (1.10), respectively. In this sec-

tion we consider the same problem for some specific values of δ =
√

D, where
D 6= 1 is a square-free positive integer. Now let γ = −k +

√
D for an integer

k ≥ 1. Then

(2.1) Iγ = [1,−k +
√

D]

is a quadratic ideal, and

(2.2) Fγ = (1, 2k, k2 − D)

is an indefinite binary quadratic form of discriminant ∆ = 4D.
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2.1. Quadratic ideals. In this subsection, we will consider some properties of γ

and Iγ in four cases: D = k2 +1, D = k2 +2, D = k2 +2k− 1 and D = k2 +2k.

Theorem 2.1. Let Iγ be the ideal in (2.1).
(1) If D = k2 + 1, then the continued fraction expansion of γ is [0; 2k] and the

cycle of Iγ is I0
γ = [1,−k +

√
D] ∼ I1

γ = [1, k +
√

D] of length 2;

(2) If D = k2 +2, then the continued fraction expansion of γ is [0; k, 2k] and the
cycle of Iγ is I0

γ = [1,−k +
√

D] ∼ I1
γ = [2, k +

√
D] ∼ I2

γ = [1, k +
√

D] of
length 3;

(3) If D = k2 + 2k − 1, then the continued fraction expansion of γ is
[0; 1, k − 1, 1, 2k] and the cycle of Iγ is I0

γ = [1,−k +
√

D] ∼ I1
γ = [2k−1, k +√

D] ∼ I2
γ = [2, k − 1 +

√
D] ∼ I3

γ = [2k − 1, k − 1 +
√

D] ∼ I4
γ = [1, k +

√
D]

of length 5;
(4) If D = k2 + 2k, then the continued fraction expansion of γ is [0; 1, 2k] and

the cycle of Iγ is I0
γ = [1,−k +

√
D] ∼ I1

γ = [2k, k +
√

D] ∼ I2
γ = [1, k +

√
D]

of length 3.

Proof. (1) Let D = k2 +1. Then Iγ = I0
γ = [1,−k+

√
k2 + 1]. So we have

from (1.12) m0 = 0 and hence P1 = k and Q1 = 1. For i = 1, we have m1 = 2k
and hence P2 = k = P1 and Q2 = 1 = Q1. For i = 2, we have m2 = 2k = m1.
Therefore the continued fraction expansion of γ is [0; 2k] and the cycle of Iγ is

I0
γ = [1,−k +

√
D] ∼ I1

γ = [1, k +
√

D] of length 2.

(2) Let D = k2 + 2. Then Iγ = I0
γ = [1,−k +

√
k2 + 2]. We have m0 = 0

and so P1 = k and Q1 = 2. For i = 1, we have m1 = k and hence P2 = k and
Q2 = 1. For i = 2, we have m2 = 2k and hence P3 = k = P1 and Q3 = 2 = Q1.
For i = 3, we have m3 = k = m1. Therefore the continued fraction expansion
of γ is [0; k, 2k], and the cycle of Iγ is I0

γ = [1,−k +
√

D] ∼ I1
γ = [2, k +

√
D] ∼

I2
γ = [1, k +

√
D] of length 3.

(3) Let D = k2 + 2k − 1. Then Iγ = I0
γ = [1,−k +

√
k2 + 2k − 1]. Hence we

have m0 = 0, and so P1 = k and Q1 = 2k − 1. For i = 1, we have m1 = 1 and
hence P2 = k−1 and Q2 = 2. For i = 2, we have m2 = k−1 and hence P3 = k−1
and Q3 = 2k − 1. For i = 3, we have m3 = 1 and hence P4 = k and Q4 = 1.
For i = 4, we have m4 = 2k and hence P5 = k = P1 and Q5 = 2k − 1 = Q1. For
i = 5, we have m5 = 1 = m1. Therefore the continued fraction expansion of γ

is [0; 1, k − 1, 1, 2k] and the cycle of Iγ is I0
γ = [1,−k +

√
D] ∼ I1

γ = [2k − 1, k +√
D] ∼ I2

γ = [2, k − 1 +
√

D] ∼ I3
γ = [2k − 1, k − 1 +

√
D] ∼ I4

γ = [1, k +
√

D] of
length 5.

(4) Let D = k2 + 2k. Then Iγ = I0
γ = [1,−k +

√
k2 + 2k] and hence m0 = 0

and P1 = k and Q1 = 2k. For i = 1, we have m1 = 1 and hence P2 = k and
Q2 = 1. For i = 2, we have m2 = 2k and hence P3 = k = P1 and Q3 = 2k = Q1.
For i = 3, we have m3 = 1 = m1. Therefore the continued fraction expansion of
γ is [0; 1, 2k] and the cycle of Iγ is I0

γ = [1,−k +
√

D] ∼ I1
γ = [2k, k +

√
D] ∼

I2
γ = [1, k +

√
D] of length 3. ¤
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Example 2.1. Let k = 6.
(1) If D = 62 + 1 = 37, then the continued fraction expansion of γ = −6 +

√
37

is [0; 12 ] and the cycle of Iγ is I0
γ = [1,−6 +

√
37] ∼ I1

γ = [1, 6 +
√

37].

(2) If D = 62 + 2 = 38, then the continued fraction expansion of γ = −6 +
√

38
is [0; 6, 12 ] and the cycle of Iγ is I0

γ = [1,−6 +
√

38] ∼ I1
γ = [2, 6 +

√
38] ∼

I2
γ = [1, 6 +

√
38].

(3) If D = 62 + 2.6 − 1 = 47, then the continued fraction expansion of γ =
−6 +

√
47 is [0; 1, 5, 1, 12 ] and the cycle of Iγ is I0

γ = [1,−6 +
√

47] ∼ I1
γ =

[11, 6 +
√

47] ∼ I2
γ = [2, 5 +

√
47] ∼ I3

γ = [11, 5 +
√

47] ∼ I4
γ = [1, 6 +

√
47].

(4) If D = 62 +2.6 = 48, then the continued fraction expansion of γ = −6+
√

48
is [0; 1, 12 ] and the cycle of Iγ is I0

γ = [1,−6 +
√

48] ∼ I1
γ = [12, 6 +

√
48] ∼

I2
γ = [1, 6 +

√
48].

Theorem 2.2. The ideals Iγ in Theorem 2.1 are not reduced.

Proof. Let D = k2 + 1. Then Iγ = [1,−k +
√

k2 + 1]. Recall that k ≥ 1,
so 2k > 0. Hence

2k + k2 + 1 > k2 + 1 ⇔ (k + 1)2 > k2 + 1 ⇔ k + 1 >
√

k + 1 ⇔ 1 > −k +
√

k + 1

which is in contradiction to (1.11). So Iγ is not reduced. The other cases can be
dealt with similarly. ¤

2.2. Quadratic forms. In this subsection, we will consider some properties of
indefinite binary quadratic forms Fγ . First we consider their reducibility.

Theorem 2.3. Fγ is reduced if and only if k2 < D < k2 + 2k + 1.

Proof. Let Fγ be reduced. Then by (1.2) we have

∣

∣

√
∆ − 2|a|

∣

∣ < b <
√

∆ ⇔ |
√

4D − 2| < 2k <
√

4D ⇔
√

D − 1 < k <
√

D.

Hence it is clear that k2 < D and D < (k + 1)2. So k2 < D < k2 + 2k + 1.
Conversely let k2 < D < k2 + 2k + 1. Then k <

√
D and

√
D < k + 1. So

|
√

4D − 2| < 2k <
√

4D ⇔
∣

∣

√
∆ − 2|a|

∣

∣ < b <
√

∆

and hence Fγ is reduced by (1.2). ¤

Now we can give the following theorem concerning the cycles of Fγ in four
cases: D = k2 + 1, D = k2 + 2, D = k2 + 2k − 1 and D = k2 + 2k. Note that for
these values of D, Fγ is reduced by Theorem 2.3.

Theorem 2.4. Let Fγ be the quadratic form in (2.2).
(1) If D = k2 + 1, then the cycle of Fγ is F 0

γ = (1, 2k,−1) of length 1.
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(2) If D = k2 + 2, then the cycle of Fγ is F 0
γ = (1, 2k,−2) ∼ F 1

γ = (2, 2k,−1) of
length 2.

(3) If D = k2 + 2k − 1, then the cycle of Fγ is F 0
γ = (1, 2k,−2k + 1) ∼ F 1

γ =
(2k − 1, 2k − 2,−2) ∼ F 2

γ = (2, 2k − 2,−2k + 1) ∼ F 3
γ = (2k − 1, 2k,−1) of

length 4.
(4) If D = k2 +2k, then the cycle of Fγ is F 0

γ = (1, 2k,−2k) ∼ F 1
γ = (2k, 2k,−1)

of length 2.

Proof. (1) Let D = k2 + 1. Then Fγ = F 0
γ = (1, 2k,−1). Applying (1.6),

we get s0 = 2k and hence by (1.7), we get F 1
γ = (a1, b1, c1) = (1, 2k,−1) = F 0

γ .
Therefore the cycle of Fγ is completed and is F 0

γ = (1, 2k,−1) of length 1.
(2) Let D = k2 + 2. Then Fγ = F 0

γ = (1, 2k,−2) and hence s0 = k.
So F 1

γ = (a1, b1, c1) = (2, 2k,−1). Similarly we find that s1 = 2k and F 2
γ =

(a2, b2, c2) = (1, 2k,−2) = F 0
γ . Therefore the cycle of Fγ is completed and is

F 0
γ = (1, 2k,−2) ∼ F 1

γ = (2, 2k,−1) of length 2.
(3) Let k2 + 2k − 1. Then Fγ = F 0

γ = (1, 2k,−2k + 1) and hence s0 = 1.
So F 1

γ = (a1, b1, c1) = (2k − 1, 2k − 2,−2). Similarly we can obtain s1 = k − 1
and F 2

γ = (a2, b2, c2) = (2, 2k − 2, 1 − 2k). Also s2 = 1 and F 3
γ = (a3, b3, c3) =

(2k − 1, 2k,−1). Finally s3 = 2k and F 4
γ = (a4, b4, c4) = (1, 2k, 1 − 2k) = F 0

γ .
Therefore the cycle of Fγ is completed and is F 0

γ = (1, 2k,−2k + 1) ∼ F 1
γ =

(2k − 1, 2k − 2,−2) ∼ F 2
γ = (2, 2k − 2,−2k + 1) ∼ F 3

γ = (2k − 1, 2k,−1) of
length 4.

(4) Let D = k2 + 2k. Then Fγ = F 0
γ = (1, 2k,−2k) and hence s0 = 1.

So F 1
γ = (a1, b1, c1) = (2k, 2k,−1). For i = 1 we have s1 = 2k and hence

F 2
γ = (a2, b2, c2) = (1, 2k,−2k) = F 0

γ . Therefore the cycle of Fγ is completed
and is F 0

γ = (1, 2k,−2k) ∼ F 1
γ = (2k, 2k,−1) of length 2. ¤

Example 2.2. Let k = 7.
(1) If D = 72 + 1 = 50, then the cycle of Fγ = (1, 14,−1) is F 0

γ = (1, 14,−1) of
length 1.

(2) If D = 72 + 2 = 51, then the cycle of Fγ = (1, 14,−2) is F 0
γ = (1, 14,−2) ∼

F 1
γ = (2, 14,−1) of length 2.

(3) If D = 72 + 2.7 − 1 = 62, then the cycle of Fγ = (1, 14,−13) is F 0
γ =

(1, 14,−13) ∼ F 1
γ = (13, 12,−2) ∼ F 2

γ = (2, 12,−13) ∼ F 3
γ = (13, 14,−1) of

length 4.
(4) If D = 72+2.7 = 63, then the cycle of Fγ = (1, 14,−14) is F 0

γ = (1, 14,−14) ∼
F 1

γ = (14, 14,−1) of length 2.

Now we consider the proper and improper automorphisms of Fγ .

Theorem 2.5. Let Fγ be the quadratic form in ( 2.2).
(1) If D = k2 + 1, then

#Aut(Fγ)+ =

{

6 if k = 1, 2,

2 if k > 2
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and

#Aut(Fγ)− =

{

8 if k = 1,

4 if k > 1.

(2) If D = k2 + 2, then

#Aut(Fγ)+ =











10 if k = 1,

6 if k = 2, 3,

2 if k > 3,

and

#Aut(Fγ)− =











10 if k = 1,

6 if k = 2,

4 if k > 2.

(3) If D = k2 + 2k − 1, then

#Aut(Fγ)+ =

{

6 if k = 1, 2,

2 if k > 2,

and

#Aut(Fγ)− =

{

8 if k = 1,

4 if k > 1.

(4) If D = k2 + 2k, then

#Aut(Fγ)+ = #Aut(Fγ)− =

{

10 if k = 1,

6 if k > 1.

Proof. (1): Let k = 1. Then Fγ = (1, 2,−1). The system of equations

r2 + 2rs − s2 = 1,

2rt + 2ru + 2ts − 2su = 2,

t2 + 2tu − u2 = −1,

has a solution for g = ±[5;−2;−2; 1],±[1; 2; 2; 5],±[1; 0; 0; 1]. So

Aut(Fγ)+ = {±[5;−2;−2; 1],±[1; 2; 2; 5],±[1; 0; 0; 1]}

and hence #Aut(Fγ)+ = 6. Similarly we find that

Aut(Fγ)+ = {±[17;−4;−4; 1],±[1; 4; 4; 17],±[1; 0; 0; 1]}

for k = 2 and Aut(Fγ)+ = {±[1; 0; 0; 1]} for all k > 2.
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Now we consider the improper automorphisms. The system of equations

r2 + 2rs − s2 = 1,

2rt + 2ru + 2ts − 2su = 2,

t2 + 2tu − u2 = −1,

has a solution for

g = ±[5; 12;−2;−5],±[5;−2; 12;−5],±[1; 2; 0;−1],±[1; 0; 2;−1],

so

Aut(Fγ)− = {±[5; 12;−2;−5],±[5;−2; 12;−5],±[1; 2; 0;−1],±[1; 0; 2;−1]}

and hence #Aut(Fγ)− = 8. Similarly we find that

Aut(Fγ)− = {±[1; 2k; 0;−1],±[1; 0; 2k;−1]}

for every k > 1.

(2)–(4): With the same argument we find that if D = k2 + 2, then

Aut(Fγ)+































{±[11;−4;−8; 3],±[3; 4; 8; 11],±[3;−1;−2; 1],

±[1; 2; 2; 3],±[1; 0; 0; 1] } for k = 1,

{±[9;−2;−4; 1],±[1; 2; 4; 9],±[1; 0; 0; 1]} for k = 2,

{±[19;−3;−6; 1],±[1; 3; 6; 19],±[1; 0; 0; 1]} for k = 3,

{±[1; 0; 0; 1]} for k > 3,

and

Aut(Fγ)− =



















{±[11; 15;−8;−11],±[3; 4;−2;−3],±[3;−1; 8;−3]

±[1; 1; 0;−1],±[1; 0; 2;−1] } for k = 1,

{±[9; 20;−4;−9],±[1; 2; 0;−1],±[1; 0; 4;−1]} for k = 2,

{±[1; k; 0;−1],±[1; 0; 2k;−1]} for k > 2.

If D = k2 + 2k − 1, then

Aut(Fγ)+ =











{±[5;−2;−2; 1],±[1; 2; 2; 5],±[1; 0; 0; 1]} for k = 1,

{±[14;−3;−9; 2],±[2; 3; 9; 14],±[1; 0; 0; 1]} for k = 2,

{±[1; 0; 0; 1]} for k > 2,

and

Aut(Fγ)− =











{±[5; 12;−2;−5],±[5;−2; 12;−5],

±[1; 2; 0;−1],±[1; 0; 2;−1]} for k = 1,

{±[k; k + 1; 1 − k;−k],±[1; 0; 2k;−1]} for k > 1.



CYCLES OF INDEFINITE BINARY QUADRATIC FORMS 31

Finally if D = k2 + 2k, then

Aut(Fγ)+ =



















{±[11;−4;−8; 3],±[3; 4; 8; 11],±[3;−1; 2; 1],

±[1; 1; 2; 3],±[1; 0; 0; 1] } for k = 1,

{±[2k + 1;−1;−2k; 1],±[1; 1; 2k; 2k + 1],

±[1; 0; 0; 1] } for k > 1,

and

Aut(Fγ)− =



















{±[11; 15;−8;−11],±[3; 4;−2;−3],±[3;−1; 8;−3],

±[1; 1; 0;−1],±[1; 0; 2;−1] } for k = 1,

{±[2k + 1; 2k + 2;−2k;−2k − 1],±[1; 1; 0;−1],

±[1; 0; 2k;−1] } for k > 1.

¤

From Theorem 2.5, we can obtain the following result.

Theorem 2.6. Fγ is ambiguous for D = k2+1, D = k2+2, D = k2+2k−1
and D = k2 + 2k.

Proof. We proved in Theorem 2.5 that the set of improper automorphisms
of Fγ is non-empty, that is, Aut(Fγ)− 6= ∅. So there exists at least one element
g ∈ Γ with det g = −1 such that gFγ = Fγ , that is, Fγ is improperly equivalent
to itself and hence is ambiguous. ¤
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