14C20 — 1 articles found.

On Duistermaat-Heckman Measure for Filtered Linear Series

C. R. Math. Rep. Acad. Sci. Canada Vol. 44 (1) 2022, pp. 16-32
Vol.44 (1) 2022
Nathan Grieve Details
(Received: 2021-09-07 )
(Received: 2021-09-07 )

Nathan Grieve, Department of Mathematics & Computer Science, Royal Military College of Canada, P.O. Box 17000, Station Forces, Kingston, ON, K7K 7B4, Canada; School of Mathematics and Statistics, 4302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada; Departement de mathematiques, Universite du Quebec a Montreal, Local PK-5151, 201 Avenue du President-Kennedy, Montreal, QC, H2X 3Y7, Canada; e-mail: nathan.m.grieve@gmail.com

Abstract/Résumé:

We revisit work of S. Boucksom, C. Favre, and M. Jonsson (J. Algebraic Geom. 18 (2009), no. 2, 279–308); Boucksom and H. Chen (Compos. Math. 147 (2011), no. 4, 1205–1229); and S. Boucksom, A. Küronya, C. Maclean, and T. Szemberg (Math. Ann. 361 (2015), no. 3–4, 811–834). The key point is to associate a Duistermaat-Heckman measure to a filtered big linear series on a given projective variety. The expectation of the measure admits a description via the theory of Newton-Okounkov bodies. Such considerations have origins in symplectic geometry. They have applications for \(\mathrm{K}\)-stability and Diophantine arithmetic geometry of projective varieties.

Nous revisitons les travaux de S. Boucksom, C. Favre, and M. Jonsson (J. Algebraic Geom. 18 (2009), no. 2, 279–308); Boucksom et H. Chen (Compos. Math. 147 (2011), no. 4, 1205–1229); et S. Boucksom, A. Küronya, C. Maclean, et T. Szemberg (Math. Ann. 361 (2015), no. 3–4, 811–834). Nous étudions deux résultats, qui sont à l’intersection de la \(\mathrm{K}\)-stabilité, de la géométrie arithmétique Diophantienne, et de la théorie des corps convexe de Newton-Okounkov. Ils se rapportent à des filtrations de grands systèmes linéaires sur des variétés projectives et à l’existence de une mesure de Duistermaat-Heckman. La mesure de Duistermaat-Heckman vient de la géométrie symplectique. L’espérance de la mesure peut être calculée par la théorie de Newton-Okounkov.

Keywords: Duistermaat-Heckman measure, Newton-Okounkov body, restricted volume functions

AMS Subject Classification: Valuations and their generalizations, Divisors; linear systems; invertible sheaves 13A18, 14C20

PDF(click to download): On Duistermaat-Heckman Measure for Filtered Linear Series

Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.