covariance — 2 articles found.

On an Extension of Stein’s Lemma

C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (2) 2020, pp. 25-28
Vol.42 (2) 2020
Christian Genest Details
(Received: 2020-06-15 , Revised: 2020-06-15 )
(Received: 2020-06-15 , Revised: 2020-06-15 )

Christian Genest, Department of Mathematics and Statistics, McGill University, 805, rue Sherbrooke ouest, Montreal (Quebec) Canada H3A 0B9; e-mail: christian.genest@mcgill.ca

Abstract/Résumé:

An extension of Stein’s lemma to arbitrary random pairs was recently proposed in the preceding article. It is shown that this generalization is valid only for linear functions and hence trivial.

Une généralisation du lemme de Stein à toute paire d’aléas a récemment été proposée dans l’article précédent. On montre que cette extension n’est valable que pour les fonctions affines et qu’elle est donc triviale.

[Note: By special arrangement this article is open access]

Keywords: Stein's lemma, covariance

AMS Subject Classification: Characterization and structure theory of statistical distributions, Characterization and structure theory for multivariate probability distributions; copulas 62E10, 62H05

PDF(click to download): On an Extension of Stein's Lemma

Generalizing Stein’s Lemma

C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (2) 2020, pp. 21-24
Vol.42 (2) 2020
Moawia Alghalith Details
(Received: 2020-02-19 , Revised: 2020-04-28 )
(Received: 2020-02-19 , Revised: 2020-04-28 )

Moawia Alghalith,Department of Economics, University of the West Indies, St. Augustine, Trinidad; e-mail: malghalith@gmail.com

Abstract/Résumé:

We generalize Stein’s lemma. That is, we do not assume a specific probability distribution. We also provide new additional results for the covariance and the variance.

Nous généralisons le lemme de Stein. Autrement dit, nous ne supposons pas une distribution de probabilité spécifique. Nous fournissons également de nouveaux résultats supplémentaires pour la covariance et la variance.

Keywords: Stein's lemma, covariance, exact Taylor expansion, probability distribution, variance

AMS Subject Classification: Exact distribution theory 62E15

PDF(click to download): Generalizing Stein's Lemma