85F08 — 1 articles found.

On the Initial Value Problem for the Electromagnetic Wave Equation in Friedmann-Robertson-Walker Space-times

C. R. Math. Rep. Acad. Sci. Canada Vol. 41 (3) 2019, pp. 45-56
Vol.41 (3) 2019
Walter Craig; Mikale Reddy Details
(Received: 2019-10-13 , Revised: 2019-10-15 )
(Received: 2019-10-13 , Revised: 2019-10-15 )

Walter Craig

Mikale Reddy,Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario L8S 4K1, Canada; e-mail: reddymikale@gmail.com

Abstract/Résumé:

We solve the source free electromagnetic wave equation in Friedmann-Robertson-Walker space-times for curvature \(K=0\) and \(K=-1\). Deriving a solution expression in the form of spherical means we deduce and compare two properties of the Maxwell propagator, namely, decay rates and continuity through the space-time singularity to that of the scalar wave equation presented by Abbasi and Craig (2014).

On résout l’équation des ondes électromagnétiques dans l’espace-temps de Friedmann-Robertson-Walker pour les courbures \(K = 0\) et \(K = -1\). En obtenant une expression de la solution en termes de moyennes sphériques, on déduit et compare deux propriétés du propagateur de Maxwell, à savoir le taux de décroissance et la continuité à travers la singularité, à celles de l’équation des ondes scalaires présentée par Abbasi et Craig (2014).

Keywords: electromagnetic wave equation, general relativity, space-time singularity

AMS Subject Classification: PDE in relativity, 35Q75, 85F08

PDF(click to download): On the Initial Value Problem for the Electromagnetic Wave Equation in Friedmann-Robertson-Walker Space-times

Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.