14M25 — 2 articles found.
Discrete Invariants of Generically Inconsistent Systems of Laurent Polynomials
Leonid Monin,Department of Mathematics, University of Toronto, 40 St. George St., Toronto, Ontario, Canada M5S 2E4; e-mail: lmonin@math.toronto.edu
Abstract/Résumé:
Let \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) be finite sets in \( \mathbb{Z}^n \) and let \( Y \subset (\mathbb{C}^*)^n \) be an algebraic variety defined by a system of equations \[f_1 = \ldots = f_k = 0,\] where \( f_1, \ldots, f_k \) are Laurent polynomials with supports in \(\mathcal{A}_1, \ldots, \mathcal{A}_k\). Assuming that \( f_1, \ldots, f_k \) are sufficiently generic, the Newton polyhedron theory computes discrete invariants of \( Y \) in terms of the Newton polyhedra of \( f_1, \ldots, f_k \). It may appear that the generic system with fixed supports \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) is inconsistent. In this paper, we compute discrete invariants of algebraic varieties defined by systems of equations which are generic in the set of consistent system with support in \( \mathcal{A}_1, \ldots, \mathcal{A}_k\) by reducing the question to the Newton polyhedra theory. Unlike the classical situation, not only the Newton polyhedra of \(f_1,\dots,f_k\), but also the supports \(\mathcal{A}_1,\dots,\mathcal{A}_k\) themselves appear in the answers.
Soit \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) un ensemble fini dans \( \mathbb{Z}^n \) et soit \( Y \subset (\mathbb{C}^*)^n \) une variété algébrique définie par un système d’équations \[f_1 = \ldots = f_k = 0,\] où \( f_1, \ldots, f_k \) sont les polynômes de Laurent avec support dans \(\mathcal{A}_1, \ldots, \mathcal{A}_k\). Supposant que \( f_1, \ldots, f_k \) soient suffisamment génériques, la théorie du polyèdre de Newton calcule les invariants discrets de \( Y \) en fonction du polyèdre de Newton de \( f_1, \ldots, f_k \). Il peut sembler que le système avec support fixe \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) est inconsistent. Dans ce papier, nous calculons les invariants discrets des variétés algébriques définies par des systèmes d’équations qui sont génériques dans l’ensemble des systèmes cohérents avec support dans \( \mathcal{A}_1, \ldots, \mathcal{A}_k\) en réduisant la question à la théorie du polyèdre de Newton. Contrairement à la situation classique, non seulement le polyèdre de Newton de \(f_1,\dots,f_k\), mais aussi les supports \(\mathcal{A}_1,\dots,\mathcal{A}_k\) eux-mêmes apparaissent dans la solution.
Keywords: Laurent polynomials, Newton polyhedra, generically inconsistent systems, resultants
AMS Subject Classification:
Toric varieties; Newton polyhedra
14M25
PDF(click to download): Discrete Invariants of Generically Inconsistent Systems of Laurent Polynomials
Complex Quotients by Nonclosed Groups and Their Stratifications
Fiammetta Battaglia, Dipartimento di Matematica Applicata, Via S. Marta 3, 50139 Firenze, Italy; e-mail: fiammetta.battaglia@unifi.it
Abstract/Résumé:
We define the notion of complex stratification by quasifolds and show that such stratified spaces occur as complex quotients by certain nonclosed subgroups of tori associated to convex polytopes. The spaces thus obtained provide a natural generalization to the nonrational case of the notion of toric variety associated with a rational convex polytope.
On définit la notion de stratification complexe de quasifolds et on montre que ces espaces stratifiés se réalizent comme quotients complexes par des sousgroupes non fermés de tores, associés aux polytopes convexes. Les espaces ainsi obtenus donnent une généralization naturelle, au cas non rationnel, de la notion de variété torique associée à un polytope convexe rationnel.
Keywords: complex quotients, convex polytopes, quasifolds, stratified spaces
AMS Subject Classification:
Toric varieties; Newton polyhedra
14M25
PDF(click to download): Complex Quotients by Nonclosed Groups and Their Stratifications
Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.