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Discrete Invariants of Generically
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Abstract. Let A1, . . . ,Ak be finite sets in Zn and let Y ⊂ (C∗)n be

an algebraic variety defined by a system of equations

f1 = . . . = fk = 0,

where f1, . . . , fk are Laurent polynomials with supports in A1, . . . ,Ak. As-

suming that f1, . . . , fk are sufficiently generic, the Newton polyhedron the-

ory computes discrete invariants of Y in terms of the Newton polyhedra
of f1, . . . , fk. It may appear that the generic system with fixed supports

A1, . . . ,Ak is inconsistent. In this paper, we compute discrete invariants of
algebraic varieties defined by systems of equations which are generic in the

set of consistent system with support in A1, . . . ,Ak by reducing the ques-

tion to the Newton polyhedra theory. Unlike the classical situation, not
only the Newton polyhedra of f1, . . . , fk, but also the supports A1, . . . ,Ak

themselves appear in the answers.

Résumé. Soit A1, . . . ,Ak un ensemble fini dans Zn et soit Y ⊂ (C∗)n

une variété algébrique définie par un système d’équations

f1 = . . . = fk = 0,

où f1, . . . , fk sont les polynômes de Laurent avec support dans A1, . . . ,Ak.

Supposant que f1, . . . , fk soient suffisamment génériques, la théorie du
polyèdre de Newton calcule les invariants discrets de Y en fonction du

polyèdre de Newton de f1, . . . , fk. Il peut sembler que le système avec

support fixe A1, . . . ,Ak est inconsistent. Dans ce papier, nous calculons
les invariants discrets des variétés algébriques définies par des systèmes
d’équations qui sont génériques dans l’ensemble des systèmes cohérents

avec support dans A1, . . . ,Ak en réduisant la question à la théorie du
polyèdre de Newton. Contrairement à la situation classique, non seulement

le polyèdre de Newton de f1, . . . , fk, mais aussi les supports A1, . . . ,Ak

eux-mêmes apparaissent dans la solution.
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1. Introduction With a Laurent polynomial f in n variables one can asso-
ciate its support supp(f) ⊂ Zn which is the set of exponents of monomials having
non-zero coefficient in f and its Newton polyhedra ∆(f) ⊂ Rn which is the con-
vex hull of the support of f in Rn. Consider an algebraic variety Y ⊂ (C∗)n
defined by a system of equations

(1) f1 = · · · = fk = 0,

where f1, . . . , fk are Laurent polynomials with the supports in finite sets
A1, . . . ,Ak ⊂ Zn. The Newton polyhedra theory computes invariants of Y as-
suming that the system (1) is generic enough. That is, there exists a proper
algebraic subset Σ in the space Ω of k-tuples of Laurent polynomials f1, . . . , fk
such that the corresponding discrete invariant is constant in Ω \Σ and could be
computed in terms of polyhedra ∆1, . . . ,∆k. One of the first examples of such
result is the Bernstein-Kouchnirenko-Khovanskii theorem (see [1]).

Theorem 1 (BKK). Let f1, . . . , fn be generic Laurent polynomials with sup-
ports in A1, . . . ,An. Then all solutions of the system f1 = . . . = fn = 0 in (C∗)n
are non-degenerate and the number of them is equal to

n!Vol(∆1, . . . ,∆n),

where ∆i is the convex hull of Ai and Vol is the mixed volume.

For some of other examples see [3], [5], [7]. If (f1, . . . , fk) ∈ Σ, the invariants of
Y depend not only on ∆1, . . . ,∆k and, in general, are much harder to compute.

In the case that A1, . . . ,Ak are such that the general system is inconsistent
in (C∗)n one can modify the question in the following way. W hat are discrete
invariants of a zero set of generic consistent system with given supports? The
main result of this paper is Theorem 18 which reduces this question to the
Newton polyhedra theory. In this situation, the discrete invariants are computed
in terms of supports themselves, not the Newton polyhedra. Some examples of
applications of Theorem 18 are given in Section 5 (in particular we obtain a
generalization of the BKK Theorem).

Acknowledgments The author would like to thank Askold Khovanskii for the
proposing this problem and for his enthusiasm and support during the work as
well as Bernd Schober and the referee for very useful comments on the earlier
versions of the paper.

2. Preliminary Facts on the Set of Consistency The material of this
section is well-known (see for example [4], [8], [2]).

2.1. Definition of the incidence variety and the set of consistency. Let A =
(A1, . . . ,Ak) be a collection of k finite subsets of the lattice Zn. The space ΩA

of Laurent polynomials f1, . . . fk with supports in A1, . . . ,Ak is isomorphic to
(C)|A1|+...+|Ak|, where |Ai| is the number of points in Ai.
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Definition 1. The incidence variety X̃A ⊂ (C∗)n × ΩA is defined as:

X̃A = {(p, (f1, . . . , fk)) ∈ (C∗)n × ΩA|f1(p) = . . . = fk(p) = 0}.

Let π1 : (C∗)n × ΩA → (C∗)n, π2 : (C∗)n × ΩA → ΩA be natural projections
to the first and the second factors of the product.

Definition 2. The set of consistency XA ⊂ ΩA is the image of X̃A under the
projection π2.

Theorem 2. The incidence variety X̃A ⊂ (C∗)n × ΩA is a smooth algebraic
variety.

Proof. Indeed, the projection π1 restricted to X̃A:

π1 : X̃A → (C∗)n

forms a vector bundle of rank |A1|+ . . .+ |Ak| − k. That is because for a point

p ∈ (C∗)n the preimage π−11 (p) ⊂ X̃A is given by k independent linear equations
on the coefficients of polynomials f1, . . . , fk. �

We will say that a constructible subset X of CN is irreducible if for any two
polynomials f, g such that fg|X = 0 either f |X = 0 or g|X = 0.

Corollary 3. The set of consistency XA is an irreducible constructible subset
of ΩA.

Proof. Since XA = π2(X̃A) is the image of an irreducible algebraic variety

X̃A under the algebraic map π2, it is constructible and irreducible. �

2.2. Codimension of the set of consistency. For a collection B = (B1, . . . ,B`)
of finite subsets of Zn let B = B1 + . . .+B` be the Minkowski sum of all subsets
in the collection and let L(B) be the linear subspace parallel to the minimal
affine subspace containing B.

Definition 3. The defect of a collection B = (B1, . . . ,B`) of finite subsets of Zn

is given by

def(B1, . . . ,B`) = dim(L(B))− `.

For a subset J ⊂ {1, . . . , `} let us define the collection BJ = (Bi)i∈J . For the
simplicity we denote the defect def(BJ) by def(J), and the linear space L(BJ)
by L(J).

The following theorem provides a criterion for a system of Laurent polynomials
with supports in A1, . . . ,Ak to be generically consistent.

Theorem 4 (Bernstein). A system of generic equations f1 = . . . = fk = 0 of
Laurent polynomials with supports in A1, . . . ,Ak respectively has a common root
if and only if for any J ⊂ {1, . . . , k} the defect def(J) is nonnegative.
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According to the Bernstein theorem, if there exist subcollection of A with
negative defect, the codimension of the set of consistency is positive. We will call
such collections A generically inconsistent. The following theorem of Sturmfels
determines the precise codimension of XA.

Theorem 5 ([8], Theorem 1.1). Let A1, . . . ,Ak be such that the generic system
with supports in A1, . . . ,Ak is inconsistent. Then the codimension of the set of
consistency XA in ΩA is equal to the maximum of the numbers −def(J), where
J runs over all subsets of {1, . . . , k}.

Definition 4. For a collection A1, . . . ,Ak of finite subsets of Zn we will denote
by d(A) the smallest defect of a subcollection of A:

d(A) = min{def(J) | J ⊂ {1, . . . , k} }.

We will say that a collection A is generically inconsistent if the minimal defect
d(A) is negative.

Definition 5. For a generically inconsistent collection A will call a subcollection
J essential if def(J) = d(A) and def(I) > d(A) for any I ⊂ J . In other words,
J is the minimal by inclusion subcollection with the smallest defect.

This definition is related to the definition of an essential subcollection given
in [8], but is different in general. Sturmfels was interested in resultants, so his
definition was adapted to the case d(A) = −1 in which both definitions coincide.

The essential subcollection is unique. For d = −1 this was shown in [8]
(Corollary 1.1), in Lemma 8 we prove this statement for arbitrary d < 0. In the
case d(A) = 0 we will call the empty subcollection to be the unique essential
subcollection.

Remark 1. In the case d(A) = 0 the subcollections J such that def(J) = 0 and
def(I) > 0 for any nonempty I ⊂ J are also playing important role (see [7]).

3. The Defect and Essential Subcollections

3.1. Uniqueness of essential subcollection. Let A1, . . . ,Ak be finite subsets of
the lattice Zn. As before, for any J ⊂ {1, . . . k}, let L(J) be the vector subspace
parallel to the minimal affine subspace containing the Minkowski sum AJ =∑
Ai with i ∈ J .
Most of the results of this section are based on the obvious observation that

the dimension of vector subspaces of Rn is subadditive with respect to sums.
That is for two vector subspaces V,W ⊂ Rn the following holds:

dim(V +W ) = dim(V ) + dim(W )− dim(V ∩W ) ≤ dim(V ) + dim(W ).

The immediate corollary of the relation above is the subadditivity of defect
with respect to disjoint unions. More precisely, for disjoint I, J ⊂ {1, . . . k} the
following is true:

(2) def(I ∪ J) = def(I) + def(J)− dim(L(I) ∩ L(J)) ≤ def(I) + def(J).
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Lemma 6. Let K = I ∩ J , then def(I ∪ J) ≤ def(I) + def(J)− def(K).

Proof. By the definition of the defect we have:

def(I ∪ J) = dim(L(I ∪ J))−#(I ∪ J) = dim(L(I ∪ J))−#I −#J + #K,

where #I,#J,#K are the sizes of I, J,K respectively. But also

def(I)+def(J)−def(K) = dim(L(I))+dim(L(J))−dim(L(K))−#I−#J+#K,

so we need to compare dim(L(I ∪ J)) and dim(L(I)) + dim(L(J))− dim(L(K)).
For this notice that

dim(L(I ∪ J)) = dim(L(I)) + dim(L(J))− dim(L(I) ∩ L(J)),

and since K ⊂ I ∩ J , the space L(K) is a subspace of L(I) ∩ L(J), so

dim(L(I ∪ J)) ≤ dim(L(I)) + dim(L(J))− dim(L(K)),

which finishes the proof. �

Corollary 7. Let J and I be two not equal minimal by inclusion subcollections
with minimal defect. Then I ∩ J = ∅.

Proof. Indeed, let I ∩ J = K 6= ∅. Since K ⊂ J and K 6= J , the defect of K
is larger than the defect of J , so def(J)− def(K) < 0. But by Lemma 6

def(I ∪ J) ≤ def(I) + def(J)− def(K) < def(I) = def(J),

which contradicts def(I) = def(J) = d(A). �

Lemma 8. Let A be a collection of finite subsets of Zn with d(A) ≤ 0, then the
minimal by inclusion subcollection with minimal defect exists and is unique.

Proof. In the case d(A) = 0 the unique essential subcollection is the empty
collection J = ∅.

For d(A) < 0, existence is clear. For uniqueness, assume that I and J are
two different minimal by inclusion subcollections with minimal defect, then by
Lemma 1 I ∩J = ∅. But for disjoint subcollections I, J by relation (2) we have:

def(I ∪ J) ≤ def(I) + def(J) < def(I) = def(J),

since def(I) = def(J) = d(A) < 0. But this contradicts the minimality of I
and J . �
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3.2. Some properties of the essential subcollection. Let A = (A1, . . . ,Ak) be a
collection of finite subsets of the lattice Zn. For the subcollection J denote by
Jc = {1, . . . , k} \ J the compliment subcollection and by πJ : Rn → Rn/L(J)
the natural projection.

Lemma 9. In the notations above let πJ(Jc) be the collection (πJ(Ai))i∈Jc .
Then the following relations hold:

1. def(A) = def(J) + def(πJ(Jc)),
2. d(A) ≥ d(J) + d(πJ(Jc)),
3. if J furthermore is the unique essential subcollection of A, then

d(πJ(Jc)) = 0.

Proof. The proof of the part 1. is a direct calculation:

def(J ∪ Jc) = dim(L(J ∪ Jc))−#(J ∪ Jc) =

dim(L(J)) + dimL(πJ(Jc))−#(J)−#(Jc) = def(J) + def(πJ(Jc)).

For the part 2. note, that for any B ⊂ J , C ⊂ Jc one has L(B) ⊂ L(J) and
hence the following is true:

def(πB(C)) ≥ def(πJ(C)).

This implies that:

def(B ∪ C) = def(B) + def(πB(C)) ≥ def(B) + def(πJ(C)) ≥ d(J) + d(πJ(Jc)).

For the part 3. assume that def(πJ(I)) < 0 for some I ⊂ Jc. Then by part 1.
we have

def(J ∪ I) = def(J) + def(πJ(I)) < def(J).

Since the defect of empty collection is 0, the minimal defect d(πJ(I)) is
also 0. �

Proposition 10. Let A = (A1, . . . ,Ak) be a collection of finite subsets of Zn

such that def(A) = d(A) < 0. Let J be the unique essential subcollection of the
collection A. Then for any i ∈ J , the following is true:

def(A \ {i}) = d(A \ {i}) = d(A) + 1.

Proof. For a collection B and an element b ∈ B the defect can not increase
by more then 1 after removing b:

def(B \ {b}) ≤ def(B) + 1,

where the equality holds if and only if L(B \ {b}) = L(B). For the essential
subcollection J and any i ∈ J , the defect def(J \ {i}) is strictly greater then
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def(J), so it is equal to def(J) + 1 = def(A) + 1. Hence, L(J) = L(J \ {i}), and
in particular πJ = πJ\{i}.

Since def(A) = d(A) = def(J), the defect def(πJJ
c) is equal to zero by

part 1. of Lemma 9. Moreover, one has:

def(A\{i}) = def(J\{i})+def(πJ\{i}J
c) = def(J\{i})+def(πJJ

c) = def(A)+1.

By part 2. and part 3. of Lemma 9 one has:

d(A \ {i}) ≥ d(J \ {i}) + d(πJ\{i}J
c) = d(J \ {i}) + d(πJJ

c) = d(J) + 1.

But since def(A \ {i}) = def(A) + 1, the minimal defect d(A \ {i}) is also equal
to def(A) + 1. �

Corollary 11. Let A = (A1, . . . ,An+d) be a collection of finite subsets of Zn

such that A is an essential collection of defect −d, i.e.,

−d = d(A) = def(A) < def(J),

for any proper J ⊂ {1, . . . , n + d}. Then there exists a subcollection I of size
dim(L(A)) = n with d(I) = 0.

Proof. Apply Proposition 10 successively. �

4. The Main Theorem In this section we will prove the main theorem.
For a collection A = (A1, . . . ,Ak) of finite subsets of Zn and subcollection J
let AJ , L(J), and πJ be as before. For the subgroup G of Zn we will denote by
ker(G) the set of points p ∈ (C∗)n such that g(p) = 1 for any g ∈ G. Furthermore,
denote by

• Λ(J) = L(J) ∩ Zn the lattice of integral points in L(J);
• G(J) the group generated by all the differences of the form (a − b) with
a, b ∈ Ai for any i ∈ J ;

• ind(J) the index of G(J) in Λ(J);
• ker(G) the set of points p ∈ (C∗)n such that g(p) = 1 for any p ∈ G(J).

4.1. Independence properties of systems In this subsection we will prove inde-
pendence theorems for the roots of generically consistent systems.

Lemma 12. Let A ⊂ Zn be a finite subset of size at least 2 and let p, q ∈ (C)∗ be
such that p/q /∈ ker(G(A)). Then the set of Laurent polynomials f with support
in A, such that f(p) = f(q) = 0 has codimension 2 in ΩA.

Proof. Vanishing of f at points p and q gives two linear conditions on the
coefficients of f : ∑

k∈A

akp
k = 0,

∑
k∈A

akq
k = 0.

The relations above are independent unless (p/q)k = λ for some λ, and any
k ∈ A. The later implies that (p/q)k1−k2 = 1 for any k1, k2 ∈ A, i.e. p/q ∈
ker(G(A)). �
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Definition 6. Let T be an algebraic subgroup of (C∗)n and A = (A1, . . .An) be
a collection of finite subsets of Zn such that d(A) = 0. We would say that A
is T -independent if the generic system of Laurent polynomials f1, . . . , fn with
supports in A does not have two different roots p, q ∈ (C∗)n with p/q ∈ T .

Corollary 13. Let A = (A1, . . .An) be a collection of finite subsets of Zn

and G ⊂ (C∗)n be a finite subgroup such that G ∩ ker(A1, . . .An) = 1, then the
collection is G-independent.

Proof. Indeed, since G ∩ ker(G(A)) = 1, for each g ∈ G there exist i such
that g 6∈ ker(Ai). So the space of systems which vanish at a pair of different
points p and q with p/q ∈ G is a finite union of codimension at least 1 subspaces,
which finishes the proof. �

For an algebraic subgroup T of (C∗)n let Lie(T ) be its Lie algebra and LT ⊂
Rn be its annihilator in the space of characters. In other words, LT is a linear
span of the set of monomials which have value 1 on the identity component of a
group T .

Theorem 14. Let A = (A1, . . .An) be a collection of finite subsets of Zn such
that d(A) = 0. Let T be an algebraic subgroup of (C∗)n such that kerG(A)∩T = 1
and for any subcollection J such that LT ⊂ LJ the defect of J is positive. Then
the collection A is T -independent.

Proof. Let k be the dimension of T , then dimLT = n − k. Since for any J
with LT ⊂ LJ the defect of J is positive and d(A) = 0, there are at most n−k−1
supports Ai such that Li ⊂ LT . Indeed, assume there is a subcollection J of
size n − k with LJ ⊂ LT , then def(J) = 0 and LJ = LT , which contradicts
the assumptions. Therefore, there are at least k + 1 supports Ai, say for i =
1, . . . , k + 1, with dim(T ∩ kerAi) < k.

Define T1 to be the union
⋃k+1

i=1 (T ∩ kerAi) and T ′ = T \ T1 to be its compli-
ment. By Lemma 12, the codimension of the set of systems f with supports in
A having roots x and px for the fixed x ∈ (C∗)n and p ∈ T ′ is at least n+ k+ 1.
Hence, the space of systems with supports in A having two different roots p, q
with p/q ∈ T ′ has codimension at least 1.

If the dimension of T1 is positive, notice that LT ⊂ LT1
, and, therefore, for

any J such that LT1
⊂ LJ the defect of J is positive. Hence, we can apply the

above argument to T1, and continue inductively until we obtain Tl of dimension
0 (with T ′l−1 = Tl−1 \ Tl).

Since dimTl = 0, i.e. Tl is a finite subgroup of (C∗)n, by Corollary 13 the
space of systems with two different roots p, q with p/q ∈ T1 has codimension at
least 1.

In this manner we obtained the decomposition of T in the finite disjoint union
of subsets ql

i=0T
′
i (where T ′0 = T ′ and T ′l = Tl) such that for any i the space

of systems with a pair of different roots p, q with p/q ∈ Ti has codimension at
least 1. Therefore, the space of system with a pair of different roots p and q with
p/q ∈ T is a finite union of codimension at least 1 subspaces, and the theorem
is proved. �
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Corollary 15. Let χ : (C∗)n → C∗ be any character and A = (A1, . . .An)
be a collection of finite subsets of Zn such that G(A) = Zn and def(J) > 0
for any proper nonempty subcollection J . Then the generic system of Laurent
polynomials with supports in A does not have a pair of different roots p, q ∈ (C∗)n
with χ(p) = χ(q).

Proof. Indeed, χ(p) = χ(q) if and only if p/q ∈ ker(χ), but the collection A
is ker(χ)-independent since it satisfies the assumptions of Theorem 14 for any
algebraic subgroup of (C∗)n. �

4.2. Zero set of the generic essential system. In this subsection we will work
with the systems of Laurent polynomials f1 = . . . = fk = 0 with supports in
A = (A1, . . . ,Ak) such that the essential subcollection is A itself. We call such
systems essential.

Theorem 16. Let A = (A1, . . . ,An+d) be a collection of finite subsets of Zn

such that ind(A) = 1. Let also A be an essential collection, i.e.

−d = d(A) = def(A) < def(J),

for any proper J ⊂ {1, . . . , n + d}. Then for a generic consistent system f =
(f1, . . . , fk) ∈ XA ⊂ ΩA, the corresponding zero set Yf is a single point.

Here, and everywhere in this paper, by a generic point in algebraic variety X
parametrizing systems of Laurent polynomials we mean a point in X \ Σ for a
fixed subvariety Σ of smaller dimension.

Proof. By Proposition 11 there exists a subcollection I of A of size n with
d(I) = 0. Without loss of generality let us assume that I = {1, . . . , n}. The
space ΩA of polynomials with supports in A could be thought as a product

ΩA = ΩI × ΩIc ,

where ΩI and ΩIc are the spaces of systems of Laurent polynomials with supports
in I and Ic respectively. Let p : ΩA → ΩI be the natural projection on the first
factor.

By the Bernstein criterion the subsystem f1 = . . . = fn = 0 is generically
consistent. Moreover, the BKK Theorem asserts that the generic number of
solutions in (C∗)n is n!Vol(∆1, . . . ,∆n), where ∆i is the convex hull of Ai, and
in particular is finite. Let us denote by Ωgen

I ⊂ ΩI the Zariski open subset of
systems f1 = . . . = fn = 0 with exactly n!Vol(∆1, . . . ,∆n) roots.

For each point fI ∈ Ωgen
I the preimage p−1(fI) of the projection p restricted to

the set of consistency XA is a union of n!Vol(∆1, . . . ,∆n) vector spaces Vj(fI)’s
of dimension |An+1| + . . . + |An+d| − d each. The intersection of any two of
these vector spaces has smaller dimension for generic fI ∈ Ωgen

I . Indeed, since
G(A) = Zn and A is essential, the ussumptions of Theorem 14 are satisfied for
the collection I and subgroup ker(Ic) of (C∗)n. Hence I is ker(Ic)-independent
by Theorem 14.
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Denote by X ′A ⊂ XA the set of points which belongs to exactly one of the
Vj(fI)’s. By construction, the dimension ofX ′A is equal to |A1|+. . .+|An+d|−d =
dim(XA). Since XA is irreducible, the complement Σ = XA \X ′A is an algebraic
subvariety of smaller dimension. But for any f ∈ X ′A the zero set Yf is a single
point, so the theorem is proved. �

Corollary 17. Let A = (A1, . . . ,Ak) be an essential collection of finite subsets
of Zn of defect d(A) = def(A) = −d. Then for the generic f ∈ XA ⊂ ΩA the
zero set Yf is a finite disjoint union of ind(A) subtori of dimension n − k + d
which are different by a multiplication by elements of (C∗)n.

Proof. The lattice G(A) generated by all of the differences in Ai’s defines a
torus T ' (C∗)k−d for which G(A) is the lattice of characters. The inclusion
G(A) ↪→ Zn defines the homomorphism:

p : (C∗)n → T.

The kernel of the homomorphism p is the subgroup of (C∗)n consisting of finite
disjoint union of ind(A) subtori of dimension n− k + d which are different by a
multiplication by elements of (C∗)n.

The multiplication of Laurent polynomials by monomials does not change the
zero set of a system. For any i let Ãi be any translation of Ai belonging to
G(J). We can think of Ãi as support of a Laurent polynomial on T . We will

denote by Ã the collection (Ã1, . . . , Ãk) understood as a collection of supports of

Laurent polynomials on the torus T . The collection Ã satisfies the assumptions
of Theorem 16.

With a system f ∈ ΩA one can associate a system of Laurent polynomials f̃
on T in a way described above. The zero set of Yf of a system f is given by

Yf = p−1(Yf̃ ) (in particularYf ' Yf̃ × ker(p)),

where Yf̃ is the zero set of the system f̃ on T . By Theorem 16 for the generic

system f̃ ∈ XÃ ⊂ ΩÃ the zero set Yf̃ which finishes the proof. �

4.3. General systems

Theorem 18. Let A = (A1, . . . ,Ak) be a collection of finite subsets of Zn with
the essential subcollection J . Then for the generic system f ∈ XA ⊂ ΩA the
zero set Yf is a disjoint union of ind(J) varieties Y1, . . . , Yind(J) each of which
is given by a ∆-nondegenerate system with the same Newton polyhedra.

Theorem 18 provides a solution for the problem of computing discrete invari-
ants of the zero set of generic consistent system with generically inconsistent
supports by reducing it to the classical Newton polyhedra theory. The concrete
examples of applications of Theorem 18 are given in the next section.
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Proof. Without loss of generality let us assume that J = {1, . . . , l}. By
Corollary 17 there exists a Zariski open subset X ′A ⊂ XA, such that for any
f = (f1, . . . , fk) ∈ X ′A the zero set of the system f1 = . . . = fl = 0 is a
finite disjoint union of ind(J) subtori V1, . . . , Vind(J) which are different by a
multiplication by an element of (C∗)n.

For the generic point f = (f1, . . . , fk) ∈ X ′A the restrictions of Laurent poly-
nomials fl+1, . . . , fk to each Vi are non-degenerate Laurent polynomials with
Newton polyhedra πJ(∆l+1), . . . , πJ(∆k), respectively. �

Corollary 19. For the generic system f ∈ XA ⊂ ΩA the zero set Yf is a non-
degenerate complete intersection. That is Yf is defined by codim(Yf ) equations
with independent differentials.

Proof. Indeed, each of the components Yi ⊂ Vi of Yf is defined by the restric-
tions of Laurent polynomials fl+1, . . . , fk to Vi, and hence is a non-degenerate
complete intersection in Vi for generic consistent system f .

But the union of shifted subtori V1, . . . , Vind(J) could be defined by the
codim(Vi) more independent equations in (C∗)n, which finishes the proof. �

5. Discrete Invariants Theorem 18 asserts that any discrete invariant
which can be computed by means of the theory of Newton polyhedra could be
also computed for the zero set Yf of generic consistent system with generically
inconsistent supports. In this section we will give two examples of such calcula-
tions, but absolutely the same strategy is applicable to other discrete invariants
such as Hodge–Deligne numbers, or the number of connected components (which
were computed in the classical case in [3] and [7] respectively).

Through all of this section by the volume on a vector space V with a lattice
Λ inside we mean the translation invariant volume normalized by the following
condition: for any v1, . . . , vk which are generators of the lattice Λ, the volume of
the parallelepiped with sides v1, . . . , vk is equal to 1.

Theorem 20 (Number of roots). Let A1, . . . ,An+k ⊂ Zn be such that d(A) =
−k and J be the unique essential subcollection. Then the zero set Yf of the
generic consistent system has dimension 0, and the number of points in Yf is
equal to

(n−#J + k)! · ind(J) ·Vol(πJ(∆i)i/∈J),

where ∆i is the convex hull of Ai and Vol is the mixed volume on Rn/L(J)
normalized with respect to the lattice Zn/Λ(J).

If k = 0 this theorem coincides with the BKK theorem. In the case k = 1 the
generic number of solution appears as the corresponding degree of A-resultant
and was computed in [2].

Proof. First note that for generic f ∈ XA the dimension dim(Yf ) is equal to

dim(X̃A) − dim(XA) = 0. By Theorem 18 the generic zero set Yf is a disjoint
union of ind(J) varieties Y1, . . . , Yind(J) each of which is defined by generic system
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with Newton polyhedra πJ(∆i) for i /∈ J . By the BKK formula the number of
points in Yi is finite and is equal to (n −#J + k)!Vol(πJ(∆i)i/∈J)). Therefore,
the number of points in Yf is

|Yf | =
ind(J)∑
i=1

|Yi| = (n−#J + k)! · ind(J) ·Vol(πJ(∆i)i/∈J).

�

For simplicity, we will formulate next theorem in the “hypersurface” case, i.e.
when the essential subcollection contains all but one supports (the general case
could be deduced similarly).

Theorem 21. Let A1, . . . ,Ak ⊂ Zn be such that d(A) < 0 and let J =
{2, . . . , k} be the unique essential subcollection. Then the Euler characteristic
and the geometric genus of the zero set Yf of the generic consistent system is
given by

χ(Yf ) = (−1)n−dim(J)−1(n− dim(J))! · ind(J)Vol(πJ(∆1)),

g(Yf ) = ind(J)
(
B+(πJ(∆1))

)
,

where ∆1 is the convex hull of A1, Vol is the volume on Rn/L(J) normalized
with respect to the lattice Zn/Λ(J), and B+(∆) is the number of integral point
in the interior of ∆.

Proof. Indeed, by Theorem 18 the generic zero set Yf is a disjoint union of
ind(J) varieties Y1, . . . , Yind(J) each of which is defined by a generic equation with
a Newton polyhedra πJ(∆1). Therefore, the Euler characteristic of Yi is given by
χ(Yi) = (−1)n−dim(J)−1(n− dim(J))! ·Vol(πJ(∆1)) (see [6]), and the geometric
genus of Yi is given by g(Yi) = B+(πJ(∆1)) (see [5]). The theorem follows from
the additivity of the Euler characteristic and the geometric genus. �
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