parametric Thue equations — 1 articles found.

On the solutions of a family of quartic Thue equations,~II

C. R. Math. Rep. Acad. Sci. Canada Vol. 28, (1), 2006 pp. 24–32
Vol.28 (1) 2006
Alain Togbe Details
(Received: 2006-02-06 )
(Received: 2006-02-06 )

Alain Togbe, Mathematics Department, Purdue University North Central, 1401 S, U.S. 421, Westville, IN 46391, USA; email: atogbe@pnc.edu

Abstract/Résumé:

In this paper, we completely solve the following family of diophantine equations associated with a family of cyclic quartic number fields: \( \Phi_n(x,y)=x^4 – n^2 x^3 y -(n^3+2n^2+4n+2) x^2 y^2 – n^2 x y^3 + y^4 = 1. \) There is no integral solution except for the trivial ones: \((1,0),\; (-1,0),\; (0,1),\; (0,-1).\) We extend a previous result obtained in 2000. In fact, the new result is achieved by sharpening the previous result, using another technique.

Dans cet article, nous résolvons complètement la famille suivante d’équations Diophantiennes associées à une famille de corps de nombres cycliques de degré \(4\): \( \Phi_n(x,y)=x^4 – n^2 x^3 y -(n^3+2n^2+4n+2) x^2 y^2 – n^2 x y^3 + y^4 = 1. \) Il n’existe aucune solution entière à l’exception des solutions triviales: \((1,0),\; (-1,0),\; (0,1),\; (0,-1).\) Nous prolongeons un résultat précédent obtenu en 2000. En réalité, nous utilisons une nouvelle technique pour améliorer le précédent resultat

Keywords: Baker’s method, parametric Thue equations

AMS Subject Classification: Thue-Mahler equations 11D59

PDF(click to download): On the solutions of a family of quartic Thue equations,~II

Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.