(Received: 2008-11-11
)
(Received: 2008-11-11
)
Daniel Guan, Department of Mathematics, University of California at Riverside, Riverside, CA 92521, U.S.A.; e-mail: zguan@math.ucr.edu
Abstract/Résumé:
In this note we apply a modification theorem for compact homogeneous solvmanifolds to compact complex homogeneous manifolds with pseudo-Kählerian structures. We are then finally able to classify these compact pseudo-Kählerian manifolds as certain products of projective rational homogeneous spaces, tori, and simple and double reduced primitive pseudo-Kähler spaces.
Dans cette note, nous appliquons un théorème de modification pour des “solv-variétés” compactes et homogènes aux variétés compactes complexes equipées d’une structure pseudo-kählérienne. Nous obtenons une classification de ces variétés compactes pseudo-kählériennes sous la forme de certains produits d’espaces projectifs rationnels et homogènes, de tores, et d’espaces pseudo-kählériens réduits et primitifs simples ou doubles.
Keywords: Lie group, cohomology, compact manifolds, decompositions, fiber bundles, homogeneous space, invariant structure, modification, product, pseudo-Kahlerian, solvmanifolds, splittings, symplectic manifolds, uniform discrete subgroups
AMS Subject Classification:
General geometric structures on manifolds (almost complex; almost product structures; etc.)
53C15
PDF(click to download):
Classification of compact homogeneous manifolds with pseudo-Kählerian structures