slow decay — 1 articles found.

On the Parabolic Gluing Method and Singularity Formation

C. R. Math. Rep. Acad. Sci. Canada Vol. 44 (4) 2022, pp. 69–87
Vol.44 (4) 2022
Juncheng Wei, FRSC; Qidi Zhang; Yifu Zhou Details
(Received: 2022-11-22 )
(Received: 2022-11-22 )

Juncheng Wei, FRSC, Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada; e-mail: jcwei@math.ubc.ca

Qidi Zhang, Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada; e-mail: qidi@math.ubc.ca

Yifu Zhou, Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; e-mail: yzhou173@jhu.edu

Abstract/Résumé:

Singularity formation for evolution equations has attracted much
attention in recent years. In this survey article, we will introduce
some recent progress on the parabolic gluing
method
and its applications in investigating the mechanism
of singularity formation for parabolic flows. Two model problems will be
revisited to illustrate the ideas, and recent developments and
techniques will be presented.

La formation de singularités pour les équations d’évolution a attiré
beaucoup d’attention ces dernières années. Dans cet article d’enquête,
nous présenterons quelques progrès récents sur la méthode de
collage parabolique
et ses applications dans l’étude du
mécanisme de formation de singularités pour les écoulements
paraboliques. Deux problèmes modèles seront revisités pour illustrer les
idées, et les développements et techniques récents seront présentés.

Keywords: Blow-up, Fujita equation, Sobolev critical exponent, parabolic gluing method, slow decay

AMS Subject Classification: Asymptotic behavior of solutions, 35B40, 35K58

PDF(click to download): On the Parabolic Gluing Method and Singularity Formation

Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.