generic property — 2 articles found.

Convergence of iterates of typical nonexpansive mappings in Banach spaces

C. R. Math. Rep. Acad. Sci. Canada Vol. 27, (4), 2005 pp. 121–128
Vol.27 (4) 2005
Simeon Reich; Alexander J. Zaslavski Details
(Received: 2005-07-15 )
(Received: 2005-07-15 )

Simeon Reich, Department of Mathematics, The Technion–Israel Institute of Technology, 32000 Haifa, Israel; email: sreich@tx.technion.ac.il

Alexander J. Zaslavski, Department of Mathematics, The Technion–Israel Institute of Technology, 32000 Haifa, Israel; email: ajzasl@tx.technion.ac.il

Abstract/Résumé:

Let \(K\) be a bounded, closed and convex subset of a Banach space \(X\). We show that the iterates of a typical element (in the sense of Baire category) of a class of nonexpansive mappings which take \(K\) to \(X\) converge uniformly on \(K\) to the unique fixed point of this typical element.

Soit \(K\) un sous-ensemble borné, fermé et convexe d’un espace de Banach \(X\). Nous démontrons que les itérés d’un élément typique (au sens des catégories de Baire) d’une classe d’applications non-expansives de \(K\) dans \(X\) convergent uniformément sur \(K\) vers l’unique point fixe de cet élément typique.

Keywords: Banach space, approximate fixed point, complete metric space, fixed point, generic property, iteration, nonexpansive mapping, porous set, weakly inward

AMS Subject Classification: Nonexpansive mappings; and their generalizations (ultimately compact mappings; measures of noncompactness and condensing mappings; $A$-proper mappings; $K$-set contractions; etc.) 47H09

PDF(click to download): Convergence of iterates of typical nonexpansive mappings in Banach spaces

Almost all nonexpansive mappings are contractive

C. R. Math. Rep. Acad. Sci. Canada Vol. 22 (3) 2000, pp. 118–124
Vol.22 (3) 2000
S. Reich / A.J. Zaslavki Details
(Received: 1999-06-24 )
(Received: 1999-06-24 )

S. Reich / A.J. Zaslavki

Abstract/Résumé:

No abstract available but the full text pdf may be downloaded at the title link below.

Keywords: contractive mapping, fixed point set, generic property, nonexpansive mapping, uniform space

AMS Subject Classification: Nonexpansive mappings; and their generalizations (ultimately compact mappings; measures of noncompactness and condensing mappings; $A$-proper mappings; $K$-set contractions; etc.), Fixed-point theorems, 47H09, 47H10, 58F99

PDF(click to download): Almost all nonexpansive mappings are contractive