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BLENDS AND ALLOYS

R. EXEL

Presented by David E. Handelman, FRSC

ABSTRACT. Given two algebras A and B, sometimes assumed to be
C*-algebras, we consider the question of putting algebra or C*-algebra
structures on the tensor product A ® B. In the C*-case, assuming B to be
two-dimensonal, we characterize all possible such C*-algebra structures in
terms of an action of the cyclic group Za. An example related to commuting
squares is also discussed.

RESUME. Si A et B sont deux algebres (resp. deux C*-algebres), nous
étudions dans cette note les structures possibles d’algebre (resp. de C*-
algebre) qui peuvent étre définies sur le produit tensoriel A ® B. Si A est
une C*-algébre, nous caractérisons toutes les structures de C*-algebre sur
le produit tensoriel A ® C? par une action du groupe cyclique Zs. Nous
présentons aussi un exemple associé aux carrés commutatifs.

1. Introduction When G is a group and o : G — Aut(A) is an action of
G on a unital K-algebra A, one may form the the crossed product algebra (also
known among algebraists as the skew group algebra) A x, G. As a vector space
A %, G is just the tensor product A @ K(G), where K(G) denotes the group
algebra of G with coefficients in the base field K. The multiplication operation
on A x, G is given by

(a®g)(b® h) = aay(b) @ gh, Vabe A Vg hed.

Researchers working with crossed products are used to thinking that the above
multiplication operation on A ® K(G) has been twisted, or skewed by the group
action in relation to the usual tensor product multiplication. Viewing things
from this point of view, one can’t help but to ask in how many other ways can
the usual mutiplication on a tensor product algebra be similarly modified.

Returning to the example of crossed products above, it turns out that the
maps

1:a€A—~a®leAx,G
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and
jJiyeK(G)—1@ye Ax, G

are algebra homomorphisms and, in addition, A x, G is equal to the linear span
of both i(A)j (K (G)) and j(K(G))i(A).
Motivated by these properties we define a blend of algebras as being a quin-
tuple
X =(A,B,i,j,X),

where A, B and X are unital algebras (see below for the definition in the non-

unital case), and
i:A—X and j:B— X

are unital homomorphisms such that the maps

i1®j :a®@beA®B +— i(a)j(b) € X,
and

j®i:b®aeB®A +— jb)i(a)e X

are surjective. If moreover ¢ ® j and j ® i are one-to-one, we say that X is an
alloy.

Working in the category of C*-algebras we introduce similar notions, but the
above requirement that ¢ ® j and j ® ¢ are surjective is replaced by the weaker
requirement that they have dense range.

Given an algebraic alloy, we may identify A® B with X under i® j, and hence
make A ® B an algebra. Its multiplication operation will therefore satisfy

(1.1)  (d@1)(a®@b)=da®@b and (ax@b)(1®b)=axbb.

This is evidently not enough to characterize the whole multiplication operation
in A® B, but if one is also given the map

T:BRA— AR B,

defined by 7 = (i ® j)~'(j ® ), then the product between 1 ® b and a ® 1 may
be written in terms of 7 as

(1I®b)la®l)=70b®a).

In fact the multiplication operation on A® B may be completely recovered, given
T, as follows:

(a1 ®@b1)(az ®b2) = (a1 ®1)(1®@b1)(az® 1)(1® bz)
(12) = (a1 (24 ].)T(bl (24 (12)(1 X b2)

while the final answer may be reached upon an application of (1.1).
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Conversely, given a map 7: B® A — A ® B, one may take the above answer
as the definition of a multiplication operation on A ® B, which will evidently not
always be associative but, at least in theory, one may spell out a condition on 7
for the associativity to hold.

At this point I must confess that I could not find any nice looking associativity
condition. This is perhaps an indication that this whole circle of ideas is thornier
than one would initially believe. For starters, as already seen, this construction
would encompass all group actions on algebras!

Of course similar thorny questions may be also asked in case A and B are C*-
algebras, but then one wouldn’t expect to get a C*-algebra right away, unless
A ® B is completed under some suitable norm.

In the purely algebraic situation this question has already been extensively
treated, but almost always B is supposed to have some extra structure, like that
of a Hopf algebra [2], [4] or some similar structure [7], [1].

Perhaps the most general approach to this problem is due to Brzezinski [3],
where no algebra structure whatsoever is assumed on B, which is only assumed
to be a vector space!

Among other things the beauty of Mathematics rests on the fact that, no
matter how hard is the problem facing us, there is always an easier special case
which may be effectively studied and which, one hopes, may lead the way to new
ground.

Far from attempting a complete theory of blends or alloys in either the purely
algebraic or the C*-algebraic context, the aim of this paper is to exploit a few
concrete situations in which we have found some surprising amount of math-
ematical structure, but which apparently have not yet been discussed in the
literature.

In our first example, a truly humbling experience, we study all possible C*-
algebra structures on A ® B, when A is an arbitrary unital C*-algebra and
B = C?. Curiously this turns out to be quite involving and the answer is that
crossed products of A by actions of Zy provide all possible examples!

This evidently begs for a generalization to B = C", for n > 2, but unfortu-
nately our methods do not seem to extend beyond the case n = 2.

Our second main example is based on Jones’ basic construction, as generalized
by Watatani [15] to C*-algebras. As initial data we consider a commuting square
[11] of C*-algebras, meaning C*-algebras A, B, C' and D, such that

A D B
ul ul
C O D,

and D = BN C. We also suppose we are given conditional expectations
EF:A—-B and F:A—C,

satisfying FF' = F'E. Evidently one then has that G := EF is a conditional
expectation onto D. Given such a commuting square we let M be the Hilbert
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D-module obtained by completing A under the D-valued inner-product
(a,by = G(a™b), Va,be A.

We moreover let e, f and g be the projections on M obtained by extending E, F’
and G, respectively, to M. Viewing the left action of A on M as a homomorphism
A A — ZL(M), where Z(M) denotes the algebra of all adjointable operators
on M, we introduce our main players, namely the C*-algebras

K, =5pan A(A)gA(A), K. =5pan A(A)eA(A) and Ky =span A\(A)fA(A).
We then show that there are natural maps
Qo Ko — M(K,) and ip: K;— M(K,),

where M (K,) stands for the multiplier algebra of K,. The main oustanding
question left unresolved by this work, incidentally also the question that moti-
vated me to consider the notion of a C*-blend, is whether or not

(KmevieaiﬁKg)

is a C*-blend (please see below for the definition of a C*-blend in the non-unital
case).

Having little to say about this problem in its full generality we consider two
special cases where we are able to give positive answers. The first one is the case
in which G is of index finite type [15], while in the second case we assume that
A is a unital commutative algebra and D = C1.

After having discussed a preliminary notion of blends and alloys with George
Elliott and Zhuang Niu, they have found an interesting example of a C*-alloy
related to the irrational rotation C*-algebra, which we briefly describe below
with their kind permission.

Last but not least I would like to thank V. Jones and G. Elliott for stimulating
conversations while this work was being prepared.

2. General concepts In this section we shall describe the main concepts to
be treated in this work and which will be further developped in several different
directions in the forthcoming sections.

We will assume througout that R is a commutative unital ring, quite often
specialized to be the field of complex numbers. By an algebra we will always
understand an associative R-algebra.

If A is an R-algebra we will denote by M (X) the algebra of multipliers of X
(see e.g. [5, 2.1] for a definition). In badly behaved cases X is not necessarily
isomorphic to a subalgebra of M(X), so we will assume that the natural map
from X to M(X) is injective and hence we will think of X as a subalgebra of
M(X). Please see the discussion following [5, 2.2].
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Definition 2.1. Consider a quintuple X = (A, B,,j, X ), where A, B and X are
R-algebras, and
1:A—> M(X) and j:B— M(X)

are homomorphisms. Also consider the R-linear maps

i®j : a®be A®r B +— i(a)j(b) € M(X),
and

j®i:b®aeBrA — j(b)i(a) € M(X).
We will say that & is:

(a) a blend when the ranges of both ¢ ® j and j ® ¢ coincide with X (or rather
its cannonical copy within M (X)),
(b) an alloy when, in addition to (a), one has that ¢ ® j and j ®¢ are one-to-one.

In either case, when A, B, and X are unital algebras, and both ¢ and j preserve
the unit, we will say that X" is a unital blend or alloy.

As already mentioned in the introduction, if G is a group acting on a unital
algebra A, then
(A, R(G),i,j,Ax Q)
is an example of a blend, which is easily seen to be an alloy.
Definition 2.2. Let X} = (A, B,i1,j1,X1) and Xy = (A, B, 12, j2, X2) be blends.
A morphism from X; to X is a homomorphism

o: M(Xy) = M(X2),

such that ¢i; = i9, and ¢j; = jo. The morphism will be termed an isomorphism
when ¢ is bijective. If X} and X5 are unital blends, we will say that ¢ is a unital
morphism provided ¢(1) = 1.

Given a morphism ¢, as above, notice that
(2.1) P(i1 ® j1) = iz ® Jo.
Therefore it is evident that ¢(X;) = Xo.
PROPOSITION 2.3.  Every morphism from a blend to an alloy is an isomorphism.

ProOF. Let &} = (A7B7i1,j1,X1) be a blend, let Xy = (A,B,’ig,jg,Xg) be
an alloy, and let ¢ be a morphism from A} to A5. Denote by 1 the restriction
of ¢ to Xy, viewed as a map onto Xy, and observe that by (2.1) we have that

P(i1 ® J1) =2 ® Jo.

By hypothesis we have that is ® jo is one-to-one, and hence so is i1 ® j;. Thus
both i1 ®j; and i5® jo are bijective maps, respectively onto X; and X5. Therefore

¥ = (ip ® j2) (i1 ® j1) ',

and hence 1 is bijective, and the reader may now prove that ¢ is necessarily
bijective as well. O
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3. C*-blends Let us now consider C*-algebraic versions of the above con-
cepts, and hence we now assume that our base ring R is the field of complex
numbers.

Definition 3.1. Consider a quintuple X = (A, B,,j, X ), where A, B and X are
C*-algebras, and

i:A— M(X) and j:B— M(X)

are *~homomorphisms. Also consider the linear maps i ® 7 and j & described in
Definition 2.1 (where A ®¢ B and B ®¢ A refer to the algebraic tensor product
over the field of complex numbers). We will say that X is:

(a) a C*- blend when the ranges of both ¢ ® j and j ® ¢ are contained and dense
in X,
(b) a C*-alloy when, in addition to (a), one has that i®j and j®1 are one-to-one.

In either case, when A, B, and X are unital algebras, and both ¢ and j preserve
the unit, we will say that X is a unital C*-blend or C*-alloy.

Observe that, since the range of j ® i is the adjoint of the range of i ® 7, if
the range of one of this maps is contained and dense in X, then so is the other.
The definition of a C*-alloy given above should be considered as tentative
for the following reason: given C*-algebras A and B, think of the case of the
minimal versus the maximal tensor products, here denoted A® B and A ® B,

min max

respectively. One evidently has two natural C*-alloys, namely

szn:(A7B7Z7.77A®B) and Xmax:<A>B>iaj7A®B)'

min max

However, as an alloy, X,,;, does not satisfy any sensible generalization of 2.3,

since the natural map
p:A®B =+ A®B
max min

provides a morphism of C*-blends which is not always an isomorphism. On the
other hand it would be interesting to check if &}, 4, satisfies anything like 2.3.

Note that a C*-blend is not necessarily an algebraic blend, since the require-
ment of having dense range is weaker than that of being surjective. However,
occasionally we shall be interested in a concept which subsumes both.

Definition 3.2. A C*-blend (A, B, 1,7, X) will be called strict if it also satisfies
the conditions of Definition 2.1.a, that is, if ¢ ® j and j ® 7 are onto X.

In all of our uses of the notion of strict C*-blends below, one of the algebras
involved will be finite dimensional.
Remark 3.3. In the unital case, if (4, B, 1, j, X) is either an algebraic or C*-alloy,
we may identify A and B with the subalgebras of X given by i(A) and j(B),

respectively. When such an identification is being made we will sometimes use
the short hand notation (A, B, X) to indicate this.
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An interesting source of examples of C*-blends is obtained from the theory of
crossed products. Given a locally compact group G acting on a C*-algebra A,
consider the full crossed product!

AxG.

Representing A x G faithfully on a Hilbert space H, one deduces from [8, 7.6.4]
that there exists a covariant representation (m,u), such that the given faithfull
representation coincides with 7 X w.
It is well known [8, 7.6.6] that the range of 7 lies in the multiplier algebra of
A x G. Moreover, if
p:C*"(G) — B(H)

denotes the integrated form of u, then the range of p is also contained in M (A %
G).

PROPOSITION 3.4. (A,C'*(G),w,p,A X G) is a C*-blend.

PRrOOF. Let us first prove that the range of 7 ® p is contained in A x G. For
this let @ € A and f € C*(G), and write f = lim,, f,,, with f,, € C.(G).
Viewing a ® f, as an element of C.(G, A), and observing that

(m xu)(a® fn) = m(a)p(fn),

by [8, 7.6.4], one sees that 7(a)p(f,) isin A x G. So
(@ p)(a@ f) =m(a)p(f) = limm(a)p(fn) € AXG,

as claimed.

Next, let us check that the range of m ® p is dense in A x G. For this, let us
view A® C.(G) as a subspace of C.(G, A) in the usual fashion. The former may
be easily shown to be dense in the latter under the inductive limit topology.

On the other hand, by the very definition of crossed products, the image of
C.(G, A) under 7 x u is a dense subalgebra of A x G. Therefore

(m® p) (A ® CC(G)) = F(A)p(CC(G)) = (7 xu) (A ® CC(G))

is dense in A x G. Evidently we also have that (7 ® p)(A @ C*(G)) is dense.
Upon taking adjoints, the same conclusions apply to p ® 7, concluding the
proof. O

If G is a finite group one may in fact prove the above to be a strict C*-alloy.
In this case, one has that C*(G) is finite dimensional and this might lead one
to expect C*-blends to be strict whenever one of the algebras involved is finite
dimensional. However, in section 9 we shall present an example of a non strict
C*-blend (A, B, i, j, X), in which B is a two-dimensional algebra.

ISimilar conclusions may be obtained if we choose the reduced crossed product instead.
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4. The Elliott-Niu alloy In this short section we describe, without proofs,
an interesting example of a C*-algebra found by Elliott and Niu.
Given an irrational number 6, consider the unitary operators u and v on

L?(S1) defined by

w@)l. =2¢(z) and  v(¢)]. = E(e*T),

for all ¢ € L2(S') and z € S'. It is well known that the C*-algebra generated by
u and v is isomorphic to the irrational rotation C*-algebra Ag. Since the latter is
a crossed product of C'(S') by Z, we may use 3.4 to obtain a blend (cf. Remark
3.3)

(C(Sl)a C(Sl)a AG)»

where the second occurence of C(S!) above is justified by the fact that it is
isomorphic to C*(Z). Let x be the characteristic function of the arc

J={e”:0§t§2770},

and let p be the operator on L?(S*) given by

so that p is just the spectral projection of u associated to the arc J.
Denote by B the closed *-algebra of operators on L?(S') generated by the set

{u,v"pv=F . k € Z}.
It is not hard to show that B is isomorphic to the algebra
c(s';0),

formed by all bounded, complex valued functions on the circle which are contin-
uous at all points except possibly for points in the orbit of 1 under rotation by
276, where the lateral limits exist.

Since B is clearly invariant under rotation by 276 (conjugation by v), one
may also form the crossed product B x Z and, as above, it is not surprising that

(B,C(S"),Bx1Z)

is also a blend. The interesting aspect of the Elliott-Niu example is that it
extrapolates the realm of crossed products as follows.

Let ¢ be the spectral projection of v (as opposed to ) associated to the arc
J, and let C be the closed *-algebra of operators on L?(S') generated by the set

{v,ufqu " : k € Z}.

Again it is possible to prove that C' is isomorphic to C(S';6).
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THEOREM 4.1 (Elliott-Niu [6]). The set
Xp=span {bc:be B, ce C}

is a subalgebra of operators on L*(SY), and consequently (B, C, Xy) is a C*-blend,
which is in fact a C*-alloy.

A proof of this result will hopefully appear soon.
In analogy with the highly influential isomorphism problem for irrational ro-
tation C*-algebras ([13], [14]), one may ask:

Question. Given real numbers 6 and 0’, when are Xy and Xy isomorphic?

5. Algebraic alloys with B = R?> The examples based on crossed products
above, together with the complexity and wide variety of group actions on C*-
algebras, should be enough to convince the reader that the concept of a blend,
in both the algebraic and the C* version, is a rather general and deep one.
Understanding it in full is therefore a colossal task not likely to be accomplished
in the near future.

In order to be able to say anything meaninful about blends and alloys we will
make a drastic simplification by assuming that one of the algebras involved is
as elementary as can possibly be, namely B = C2. In this case we will give a
complete classification of unital strict C*-alloys.

In preparation for this we shall now study the algebraic counterpart, namely
alloys in which B is the direct sum of two copies of the coefficient ring R.

As the above title suggests we shall fix, for the remainder of this section, a
unital alloy (A, B, i, j, X) such that B = R?, the latter viewed as an algebra with
the usual coordinatewise operations. As already mentioned we will think of A
and R? as subalgebras of X and we will refer to our alloy simply as (A, R?, X).
We will denote by p and ¢ the standard idempotents of R?, namely

p=(1,0) and ¢=(0,1).

PROPOSITION 5.1.  Ewvery element c € X admits unique decompositions as

(5.1) c=ap+ bg,
and
(5.2) c=pa +ql,

where a,b,a’, b’ € A.

Proor. This follows from the corresponding statements about decomposing
an element in A®r R? as a®p+b®q, and similarly with respect to R?@r A. O

The structure of the multiplication operation on X is encoded by two crucial
operators on A introduced in the following:
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PROPOSITION 5.2.  There are unique linear maps E,F : A — A, such that
pap =E(a)p and qaq=TF(a)q,

for all a € A. In addition, denoting by E = idya — E, and F = idg — F, we
have that

(i) pa=E(a)p+F (a)g,
(i) ga = E (a)p + F(a)g,

for alla € A.

PROOF. Given a € A, we may use (5.1) to write

(5.3) Pa = Tap + Yad,

for a unique pair (z4,%,) € A%. The map
E:acA—uz,€A

is therefore well defined and may be easily proven to be linear. Right multiplying
(5.3) by p then leads to

pap = zqp = E(a)p.

The uniqueness of E follows immediately from Proposition 5.1 and a similar
reasoning applies to prove the existence and uniqueness of F. As for the last
part of the statement, given a in A, write
pa=2rap+ysq and  ga = zap + Wag.
Clearly z, = E(a), and w, = F(a), while
ap+aq=alp+q) =a=(p+q)a=pa+qa= (E(a)+2)p+ (ya + F(a))q.
Again by the uniqueness part of Proposition 5.1 we deduce that
za = a —E(a) = EL(a) and  y,=a—F(a) =F (a).

This concludes the proof. O

The fact that E and F really do encode the multiplication operation on X is
made clear by the following:

PROPOSITION 5.3.  Given ¢; = a1p+bi1q, and co = asp+baq in X, one has that

C1Cp = (alE(ag) + blEL(ag))p + (alFL(bg) —+ blF(bg))q

PROOF. Left for the reader. O
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Because of the importance of these maps in describing the algebra structure
of X they ought to be given a name.

Definition 5.4. We will refer to (E,F) as the left intrinsic pair for the alloy
(A, R? X).

Some further important properties of E and F are studied next.

PrOPOSITION 5.5. Both E and F are idempotent operators and moreover, for
every a and b in A, one has that

(i) E(ab) =E(a)E(f)+F( a)E (b)
(i) F(ab) = f‘) (b) + F(a)F(b)
(i) E (ab) E (a)E(b) + F(a)E (b)
(iv) F (ab) = E(a)F (b) + F (a)F(b).

PrROOF. Given a in A, one has that
E(a)p = pap = p(pap) = pE(a)p = E(E(a))p,

whence E? = E, and one similarly proves that F2 = F. In order to prove (i)
notice that

E(ab)p = (pa)bp = (E(a)p + F (a)q)bp

= E(@E®)p+F (a)E (b)p = (E(@E(®) + F (a)E (b))p,

proving (i). The proof of (ii) follows similar lines. In order to prove (iii) we start
with its right hand side:

E()ED) +F()E (1) = (a—E)E®)+ (a—F(a)E (D)
— aE(b) — E(a)E(b) + aE (b) — F ()E (b)

— ab—E()E®D) — F (0)E' (1) 2 ab — E(ab) = E (ab).

One may similarly show that (ii) implies (iv). O

Another crucial piece of information to be extracted from (A, R?, X) is as
follows:

PROPOSITION 5.6.  The map
p:a€ A~ E(a)+Fla)—a€ A

is multiplicative.
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ProOOF. Given a and b in A we have
¢(ab) = E(ab) — (ab — F(ab))
GSLD) B (@)E®) + F(@)E (b) — E(a)F (b) — F(a)F(b)

1

= E(a)(E(b) ~F (b)) +F (a)(E(0) — F(b)) = E(a)é(b) — F (a)é(b)
= (E(a) — F (a))o(b) = ¢(a)p(b). 0

It is our next immediate goal to show that ¢ is indeed an automorphism of A.
In order to do so we need to introduce the right-handed versions of the operators
E and F.

= E(ab) — F (ab)

PrOPOSITION 5.7.  There are unique linear maps E,, F, : A — A, such that
pap = pE.(a) and qaq=qF.(a) Vae A

In addition,

(i) ap = pE.(a) + qF.(a),

(i) ag = pE.(a) + ¢F.(a),

for all a € A.

PrROOF. By considering the opposite algebras we may think of the alloy
(A°P ) R? X°P) (since R? is commutative, it coincides with its oposite algebra).
We may then apply 5.2 to obtain the corresponding versions of E and F, which
we denote by E, and F,, respectively. The conditions in the statement are then
obtained from the corresponding conditions in Proposition 5.2, once the order of
the factors in all products are suitably reversed. O

Definition 5.8. We shall refer to (E.,F,) as the right intrinsic pair for the alloy
(4, R?, X).

The following result lists some relevant relations satisfied by E and F together
with their right-handed versions.

ProroSITION 5.9.  The maps E, F, E, and F, introduced above satisfy:

(i) EE, =E,
(ii) FE, = E,,
(iii) FF, = F,
(iv)EF, = F,.

PrROOF. Given a in A we have that
L
E(a)p = pap = pE.(a) = E(E.(a))p + F (E.(a))q.
By Proposition 5.1 we then deduce that E = EE,, and
£
0=F (E.(a)) = E.(a) — F(E.(a)),

whence E, = FE,. The proofs of (iii) and (iv) are similar. O
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ProrosITION 5.10. The map ¢ introduced in Proposition 5.6 is an automor-
phism of A and its inverse is given by

¢y :=E,+F, —idy.
ProOF. We have that

oo, = (E+F —ida)(E.+F, —ida)
= EE,+EF,-E+FE,+FF,-F—-E,—F, +idy

and one may similarly prove that ¢,¢ = ida. O

Definition 5.11. The automorphism ¢ above shall be called the intrinsic auto-
morphism of the alloy (A, R%, X).

It is interesting that ¢ may be extended to the whole of X, as shown in the
next:

PROPOSITION 5.12.  There exists a unique automorphism ® of X, extending ¢,
and such that ®(p) = q, and ®(q) = p.

PrOOF. Given ¢ in X, let ¢ = ap + bq be its unique decomposition according
to Proposition 5.1 and put

®(c) = ¢(b)p + d(a)q.
In order to show that ® is multiplicative we first notice that
(5.4) oE=F¢ and oF =Eo,

as the reader may easily verify by writing ¢ = F — E =E-F. Given c1 and
co in A, write ¢; = a;p + b;q, for i = 1,2, so that

Beres) ) G(0iF (o) + arF (b2))p + (a1 E(an) + biE (az))g
= (0(b)E((52)) + $(a1)E (6(b2)) )p
+(9(a1)F (¢(az) + ¢(b1)F (6(a2)) )
(5.3)

(¢(b1)p + ¢(a1)q) (¢(b2)p + ¢(az)q) = (c1)P(c2).

This shows that ® is an endomorphism of X.

Glancing at the definition of ® one immediately checks that it is injective and
surjective and hence that ® is indeed an automorphism. Uniqueness of ® is also
evident. O
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6. Conditional expectations We continue enforcing the standing hypoth-
esis set out at the beginning of the previous section, namely that (A4, R?, X) is
a fixed unital algebraic alloy.

From now on we shall be interested in a concept borrowed from probability
theory:

Definition 6.1. By a conditional expectation from X to A we shall mean a linear
map
G: X = A,

which is an A-bimodule map and which coincides with the identity on A.

PROPOSITION 6.2.  There is a one-to-one correspondence between the set of all
conditional expectations G from X to A and the set of all elements h in A such
that

(6.1) ha = ¢(a)h + F (a)Va € A.

The correspondence is given by G — h = G(p).

Proor.  We first claim that, for every a € A, we have that
L
(6.2) pa = ¢(a)p+F (a).
This follows from
4 4 4 L
pa =E(a)p +F (a)(1 - p) = (E(a) — F (a))p + F (a) = ¢(a)p + F (a).
Given a conditional expectation G, let h = G(p). Then

ha = G(p)a = G(pa) ‘E’ G(é(a)p+F (a) = ¢(a)G(p) +F (a) = p(a)h+F (a).

On the other hand, given any h satisfying (6.1), define
G:ap+bge X —ah+0b(1—h)e A

Then, evidently G is a left-A-linear map, which coincides with the identity on
A. Moreover, for any = € A, we have

G((ap+bg)r) = G((a— b)pz + bz)
= (a—b)G(pz) + bz 2 (a— )G (s2)p + F (@) + ba
= (a—b)(p@)h+F (@) +br 2 (a—b)ha +bx
= G(ap +bg).

Therefore G is a conditional expectation. Finally, it is clear that the correspon-
dence G + h is injective. O
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Condition (6.1) is quite interesting because it relates the intrinsic map F to
the intrinsic automorphism ¢. Exploring this condition a bit further we obtain:

PROPOSITION 6.3.  Given any conditional expectation G : X — A, let h = G(p)
and k=1—h. Then,

i) E(a; = ha + ¢(a)k

(

(ii) F(La = ka+ ¢(a)h
(iii) EL(a) = ka — ¢(a)k
(iv)F (a) = ha — ¢(a)h

for every a € A.

PrROOF. Point (iv) follows immediately from (6.1). As for (ii) we have

Fla) = a—F(a) Y a— (ha—é(a)h) = (1 - h)a + ¢(a)h = ka + ¢(a)h,

The proofs of (i) and (iii) follow similar lines. O

The following gives an important covariance condition relating ¢ and the
images of p and ¢ under a conditional expectation.

PROPOSITION 6.4. Given a conditional expectation G from X to A, let h =
G(p), and k = G(q) =1 — h. Then
hka = ¢*(a)hk Va € A.
Proor. We initially observe that
L 4 L L
oE =—-FE =F ¢,

which may be easily proven by writing ¢ = E — F =F-E. Secondly, by

Proposition 6.3.ii we have that ka = E (a) + ¢(a)k, for every a € A. Therefore

hka = h(E(a)+ ¢(a)k) E 6(B(@)h+F(E(a) + ¢*(a)hk + F (¢(a))k
— —F(E(a ))h+F (E(a) + 6*(a)hk — F (E (a))k

s

— —F(E(a)(h+k)+F (E(a) + ¢*(a)hk = ¢*(a)hk. O

In the presence of the automorphism ® of Proposition 5.12, it is interesting
to characterize the conditional expectations which commute with ®.

PrOPOSITION 6.5. Let G : X — A be a conditional expectation and let h =
G(p). Then the following are equivalent

(i) G® =G,

(ii) ¢(h) =1 —h.
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PROOF.  Assuming (i) we have
¢(h) = @(h) = ©(G(p)) = G(2(p)) = G(¢g) = G(1 —p) =1 - h.

Conversely, if (ii) is known to hold, given any ¢ € X, write ¢ = ap+bq, according
to Proposition 5.1 and notice that

G(D() = G(ob)p+dla)g) = s(b)h + dla)(1 — h)
o(ah +b(1 — b)) = $(G(e)) = B(G()). O

Given the relevance of conditional expectations satisfying the above conditions
we make the following:

Definition 6.6. A conditional expectation G : X — A satisfying the equivalent
conditions of Proposition 6.5 will be called covariant.

An interesting question is whether or not there exists a covariant conditional
expectation. In the following sections we will give an affirmative answer in the
context of C*-algebras.

7. Strict C*-alloys with B = C2 From this point on we shall soup up the
working hypothesis of the previous two sections by assuming that we are given
a unital strict C*-alloy (A, B,i,j, X) in which B = C2.

Since the present situation is a special case of the situation treated above we
may use all of the results so far obtained, including the existence of the intrinsic
maps.

Among the consequences of our strengthened standing hypothesis notice that
the projections p and g are now self-adjoint.

As before we will refer to our alloy using the simplified notation (4,C?, X).

As seen in Proposition 5.3, the left intrinsic pair encodes the multiplication
operation on X. In the present case we will now show that the star operation
may also be recovered from the left intrinsic pair.

PRrROPOSITION 7.1.  Given a,b € A, let ¢ = ap + bq. Then
Lok L% *
¢ = (E(a*) +E("))p+ (F (a*) + F(b"))q.
PrROOF. Left for the reader. O
Let us now study the continuity of the intrinsic maps.

ProrosiTioN 7.2. E, F and ¢ are bounded linear maps.

PrROOF. We first prove the continuity of E using the Closed Graph Theorem.
For this, assume that {a,}, is a sequence of elements in A, converging to some
a € A, and such that E(a,,) — b. Then
bp = lim E(a,)p = lim pa,p = pap = E(a)p,
n—oo n—oo

so, b = E(a), and the continuity of E is established. Similarly one proves that
F is continuous and hence so if ¢. 0
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Other important properties relating the intrinsic maps and the metric struc-
ture of the C*-algebras involved are discussed next.

PROPOSITION 7.3. There exists a constant K > 0, such that, for all a in A,
one has that

(i) lap| = K|al|,
(ii) [lag]| > K|al|,
(i) | E(a*a)|| = K2|lal|?,
(iv) [F(a*a)|| = K>[|a]|*.

PROOF. Observing that X = Ap + Agq, one concludes that
Ap=Xp={ce X :¢cq=0}.

This implies that Ap is closed in X, and hence that it is a Banach space. Since
the map
Aia€ A ap e Ap,

is a continuous bijection, the Open Mapping Theorem implies that it is bicon-
tinuous. The constant K = |[A7!||~! may then be shown to satisfy (i).

A similar constant can be chosen satisfying (ii) and so we may rename K to
be the smallest of the two, and both (i) and (ii) will be satisfied with the same
constant K.

Next notice that

[E(a”a)|| > [|B(a*a)pl| = |[pa”apll = |[(ap)*ap|| = lap||* = K*|al|*,

proving (iii), while (iv) follows by a similar reasoning. O

When dealing with C*-algebras, conditional expectations are always required
to be positive. When a conditional expectation G also satisfies

Glzz™)=0= =0,

we say that G is faithful.
The following will be helpful later.

LEMMA 7.4. Given a faithful conditional expectation G : X — A, let
h=G(p) and Ek=G(q) =1-nh.

Then, for every a € A, either ah =0, or ak = 0, imply that a = 0.

PrOOF.  Assuming that ah = 0, notice that
G((ap)(ap)*) = G(apa®) = aG(p)a* = aha* =0,

so ap = 0, and hence Proposition 5.1 applies to give a = 0. The same conclusion
may similarly be obtained if we assume that ak = 0. O
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Let us now prove some useful properties of covariant conditional expectations.
Recall from Definition 6.6 that a conditional expectation is said to be covariant

when gb(G(p)) =1-G(p).

COROLLARY 7.5. For any covariant conditional expectation G : X — A, one
has that

(i) G( ) is invertible,

(ii) 1 — G(p) is invertible,

(iil) G satisfies the Pimsner—Popa finite index condition [10],
(iv) G is faithful.

PrROOF. Let h = G(p). Since G is positive we have that h is positive as
well, and so the spectrum of &, here denoted o(h), is contained in the interval
[0,+00). Arguing by contradiction, suppose that 0 € o(h). Consider the real
valued functions

fn 1 ]0,400) = R

defined by
f 1—mnt, ift<1/n,
Fnlt) = { 0, otherwise.

It is then easy to see that the element a,, := f,,(h) is positive and satisfies

1
lan|| =1 and Jla,h| < o

‘We then have

E(an) “2” hay, + ¢(an)(1 = b) “Z7 ha, + ¢(anh),
whence . ||¢H
+
IE(an)| < [[han | + [[¢lllanh]] < i

However, plugging a = ai/ % in Proposition 7.3.ii leads to

[E(an)| > K2a)/?|* = K?|lan|| = K2,
bringing about a contradiction. It follows that 0 ¢ o(h), proving (i). Similarly
one proves (ii).

In order to prove (iii), observe that 1 — h = G(q), and hence 1 — h is also
positive. Being invertible, we have that

1-h>a>0,

for some real number «. Since the same analysis applies to h, we may also
assume that h > «.
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Given ¢ = ap + bg € X, we then have
G(ec®) = G((ap+bg)(pa* + qb*)) = G(apa™ + bgb*)
= aha* +b(1 — h)b* > alaa” + bb*) > a(apa™ + bgb*) = acc™.
This proves (iii), and (iv) is then an obvious consequence. O

Let us now discuss the consequences of left-right symmety imposed by the
existence of the star operation.

Definition 7.6. If f is any linear map between two *-algebras, we let f* be given
by
[r(x) = fla®)".
Evidently f* is also linear. In addition f* coincides with f if and only if f is
*-preserving.

PROPOSITION 7.7.  The components of the left and right intrinsic pairs and the
intrinsic automorphisms satisfy:

(i) E* =E,,
(ii) F* = F,,
(iii) o* = o7,
(iv)@* = ¢~ L.

PrOOF. Given a in A, observe that
pE..(a) = pap = (pa*p)* = (E(a*)p)" = pE(a*)" = pE’(a),

so we deduce from Proposition 5.1 that E,(a) = E*(a). The proof that F,(a) =
F*(a) is similar. With respect to (iii), recall from 5.10 that

b l=¢, =B, +F, —idy =E* +F* —idy = ¢".
Addressing the last point, observe that, given a,b € A,

*(ap + bg) = (B(pa* + qb*))" = (go(a*) + po(b*))" = ¢*(a)g + ¢*(b)p,

from where it is evident that ®®* is the identity map, hence concluding the
proof. O

Recall from [9, 4.1] that if p is an automorphism of a C*-algebra, its dual p’

is defined by
p=""

Clearly p is a *-automorphism if and only if p'p = id.

According to [9, 6.1], p is said to be self-dual if p’ = p. If, in addition, its
spectrum? consists of non-negative real numbers, one says that p is positive.

For the convenience of the reader we state below a slight variant of the “polar
decomposition for isomorphisms” from [9], which we shall use in the sequell.

2Here p is viewed simply as a bounded linear transformation and hence one may speak of
its spectum in the usual way.
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THEOREM 7.8. [9, 7.1] Any automorphism p of a C*-algebra is written uniquely
as p = 7y, where w is a *-automorphism and v is a positive automorphism.

An application of these ideas gives us some important information.

PRrROPOSITION 7.9. The automorphism ® introduced in Proposition 5.12 is self-
dual. In addition, if
O =1IT

is the polar decomposition of ®, then Il is an involution commuting with T".

PROOF. Since ®~! = ®* by Proposition 7.7.iv, we deduce that ® = ®. We
then have that

d=¢=M0T) =TT =TI '=0"'TIrI ).

It is evident that II"! is a *-automorphism and that IITII~! is positive. By
the uniqueness part of [9, 7.1] we conclude that TI"! = II, and IITTI"! = T,
concluding the proof. O

By construction (see Proposition 5.12) we have that ® preserves A and inter-
changes p and q. These properties are reflected in the components of the polar
decomposition as follows:

ProrosITION 7.10.

(i) T'(4)=A=1(4),
(ii) T(p) = p, and T'(q) = ¢,
(iii) TI(p) = ¢, and T(q) = p.

PROOF. By the discussion following [9, 6.3], one has that ®2 = ®'® is positive.
Moreover T is the “square root” of ®2 in the sense of the analytical functional
calculus, where by square root we mean the principal branch of the complex
square root function defined on the open right half-plane.

Using Runge’s Theorem we may find a sequence {f,}, of polynomials con-
verging uniformly to the above mentioned square root function over some open
neighborhood of the spectrum of ®2. It follows that

(7.1) [ =Vo2 = Tim f(97).

Since ®?(A) = A, we then conclude that I'(A) C A.
Observing that I'"! = v/®~2, the same reasoning above gives ['"1(A4) C A,
hence proving that I'(A) = A. To conclude the proof of (i) it is now enough to

observe that
II(A) = ®(I"'(A)) = ®(A) = A.

Since ® interchanges p and ¢, as already observed, one has that ®? fixes p
and ¢. Using (7.1) we then have that

D(p) = lim f,(9%)(p) = lim £, (1) p = p,

n— oo



BLENDS AND ALLOYS 97

and likewise I'(¢) = ¢. Consequently

and similarly TI(q) = p. O

Since ¢ is the restriction of ® to A, we may easily obtain the polar decompo-
sition of the former, knowing that of the latter:

PRrROPOSITION 7.11. Let m and v be the restrictions of 11 and I" to A, respec-
tively. Then w and v are automorphisms of A and

¢ = my

is the polar decomposition of ¢. Moreover m is an involution commuting with ~y.

ProOF. By Proposition 7.10.i we have that A is invariant under IT and " and
hence 7 and 7 are indeed automorphisms of A. By [9, 6.3] we have that ~ is
positive and it is evident that 7 is a *-automorphism. Since it is clear that
¢ = 77, the uniqueness of the polar decomposition [9, 7.1] warrants that to
be the polar decomposition of ¢. The last part of the statement follows from
Proposition 7.9. 0

We may now prove the existence of covariant conditional expectations.

THEOREM 7.12.  Suppose that there exists a faithful conditional expectation G-
X — A. Then there exists another faithful conditional expectation G such that,
setting h = G(p), one has

(i) m(h)=1—h,
(i) 6(h) = 1,

and therefore G is covariant.

PROOF.  Since Il is an involutive *-automorphism of X preserving A, it is clear

that IIGII is another conditional expectation onto A, and so is the map G defined

by

G(c) + TIGTI(c)
2

It is easy to see that G is also faithful, since, for all ¢ € X, one has that

G(c) = Ve e X.

0 < G(c*e) <2G(c*c).

Letting
a0 G0) + w(Gl0)

h = G(p) 5 :
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we claim that w(h) = 1 — h. In order to prove it notice that

() = m(G(p)) +Glg) =(G(1—q))+CG(1-p)
2

o 2

o W(G(Q))Z‘f' Glp) _ -

proving (i). We next claim that ¢?(h) = h. Indeed, if k = 1—h, then Proposition
6.4 applies and hence
hkh = ¢*(h)hk,

which says that

so the claim follows from (7.4).
Evidently we also have that ®2(h) = h so, if {f, }» is the sequence of polyno-
mials employed in the proof of (7.10), we obtain

P(h) = Tim f()(h) = lim fu(1) h=h.

n— o0

It follows that

The last statement follows from (6.5). O

The existence of covariant conditional expectations allows us to prove that
the automorphism v of Proposition 7.11 is inner, as follows:

PRrROPOSITION 7.13. Let G be a covariant conditional expectation and let h =
G(p) and k =1—h. Then

v(a) = (hk)Y?a(hk)™'? Va e A.

PROOF.  Since both h and k are invertible by Corollary 7.5 we may use Propo-
sition 6.4 to write

(hk)a(hk)™! = ¢*(a) = ¢'¢(a) = 7*(a),
where we have used that the intrinsic automorphism ¢ is self-dual. The conclu-
sion then follows from [9, 6.6]. O

‘We now summarize our main results so far.

THEOREM 7.14.  Let (A,C?, X) be a unital strict C*-alloy such that there exists
a faithful conditional expectation G : X — A.  Then there exists a
*_automorphism w of A, and a positive invertible element h in A, such that
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Moreover, letting k = 1 — h, one has that the intrinsic automorphism and the
components of the left intrinsic pair are entirely determined in terms of m and h

by

¢la) = w((hk)a(hk)”V/?) = (hk)'? w(a) (hk)~V/2,
E(a) = ha+ ¢(a)k,
F(a) = Eka+ ¢(a)h,

for all a in A. Finally, the map
(7.2) G:ap+bge X —ah+bke A

is a faithful covariant conditional expectation satisfying the Pimsner—Popa finite
index condition.

PRrROOF. Let G be the faithful covariant conditional expectation given by The-
orem 7.12, let h = G(p), and let k =1 — h = G(q). Therefore

G(ap + bq) = ah + bk Va,be A,

and the last statement is then a consequence of Corollary 7.5.

Since p is positive and G preserves positivity, it is clear that h is positive. By
Corollary 7.5 we have that h and k are invertible.

Letting 7 be as in Proposition 7.11, one sees that (i) follows from the last
statement in (7.11), while (ii) is the content of Proposition 7.12.i.

The first formula above for ¢ is a consequence of Propositions 7.11 and 7.13,
while the second one follows from the fact that hk is a fixed point for 7, as one
may easily verify using (ii). The expressions for E and F above in turn follow
from Proposition 6.3.i-ii. O

The relevance of the above result is that the whole algebraic and analytical
structure of X may be recovered from 7 and h. This is because, once the
intrinsic pair is known, we may use Propositions 5.3 and 7.1 to recover both the
multiplication and star operations on X. The norm may also be recovered since
the norm on any C*-algebra is encoded in its *-algebraic structure: the norm of
an element = coincides with the square root of the spectral radius of z*z. It is
therefore meaningful to give the folowing:

Definition 7.15. We will say that the pair (7, h) is the fundamental data for the
alloy (A4,C2% X).
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8. Strict C*-alloys and crossed products by Z, As seen in the previous
section, the whole structure of a unital strict C*-alloy may be recovered from
its fundamental data. A natural question arising from this is whether or not
one may construct a C*-alloy from a pair (m, h), where 7 is a *-automorphism
of a unital C*-algebra A, and h is a positive invertible element in A satisfying
Proposition 7.14.i-ii.

This may in fact be done by first defining operators E and F on A using the
formulas provided by Proposition 7.14. On the vector space X = A @ A, where
a pair (a,b) is formally denoted ap + bg, we may then introduce a *-algebra
structure by employing formulas in Propositions 5.3 and 7.1. It may then be
shown that (A4,C?,4,j, X) is a strict C*-alloy, where

ita€Ar (a,a) €X and j:(\p)€C? (\p) € X.

The situation is however even more interesting in the sense that 7 alone
provides enough information to construct X, while h is necessary only in order
to locate p and ¢ within X. In order to explain this in detail let us first quickly
analyze the C*-alloy arising from an action of Z.

If A is a unital C*-algebra and 7 is an involutive *-automorphism of A we
may form an action of Zs on A by mapping the generator of Zy to . We may
therefore consider the crossed product algebra

X:AXIWZQ.

The unitary element implementing the action of 7, here denoted by w, is clearly
a self-adjoint unitary. Therefore, defining

1 1—
_m a4

p
we have that p and ¢ are complementary projections which therefore generate
a copy of C? within X. Thinking of A as a subalgebra of X in the usual way,
observe that, for every a in A, one has that

1 1
pap = Z(1 +w)a(l+w) = Z(a—i— wa + aw + waw)
1 1
= Z(a—kﬂ(a)w—i— aw + m(a)) = 7014—;-(&) 7_;72 = E(a)p,

where E(a) is defined to be (a + m(a))/2. Routine calculations show, in fact,
that (A, C?, X) is a strict C*-alloy with left intrinsic pair (E, E), meaning that
F = E. The intrinsic automorphism, namely ¢ = E + F — id, therefore coincides
with 7.

Recall that the usual conditional expectation G : X — A is given by

Gla+bw)=a Va,be A
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The elements h and k, which played crucial roles above, are therefore given by
h=Gp) =~ and k=1-h=_

We have thus proven:

PROPOSITION 8.1.  If 7 is an involutive *-automorphism of a unital C*-algebra
A, and X = Ax; Ly, then (A,C?, X) is a strict C*-alloy. Moreover its intrinsic
automorphism coincides with 7, and h = 1/2.

In our next result we shall prove that, under suitable conditions, the above
example is essentially the only one.

THEOREM 8.2. Let (A,C?,X) be a unital strict C*-alloy. Suppose moreover
that there exists a faithful conditional expectation G : X — A, and let (w, h) be
provided by Proposition 7.14. Then there exists a *-isomorphism

prAXNL Lo — X,
coinciding with the identity on A, and such that

p(w) = (hk)~"/?(kp — hq),

and
p((hk)!*@ + h) = p,

where w is the unitary element implementing the action of w, and k =1 — h.

PRrROOF. By direct computation, using the expression for ¢ given in Proposition
7.14, one may show that

(8.1) o(h) =k and ¢(k) = h.

From now on the proof will consist of a series of claims, starting with:
Claim 1. E(hk) = hk = F(hk), and E (hk) = 0 = F (hk).

In order to verify this we compute

(

E(hk) 27 h(ak) + s(hk)k ) hhk + khk = (h + k)hk = Rk,

while
(8.1)

F(uk) “Z7 khk) + o(hk)h ") khk + khh = kh(k + h) = hk.

Claim 2. E(h"'k) =1 =F(k'h).
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We have

E( k) 20 h(n k) + o)k ) h(h k) + (k= k+ h =1,
while

Fk1h) 27 k(k=1h) + ok 0)h ) k(k1h) + (k) = h+ k = 1.

We will now introduce the element of X which will correspond to the imple-
menting unitary in the crossed product. Let

u = (hk)~Y2(kp — hq).

It is our next immediate goal to show that w is a self-adjoint unitary. We begin
with the following:

Claim 3. u is an isometry.
We have

w'u = (kp— hq)*(hk)"*(kp — hq) = (pk — qh)(hk) " (kp — hq)
= (ph™' —qk ") (kp — hq) = ph~'kp + gk~ 'hq
= Eh'kp+F(E 'h)g=p+q=1

Claim 4. hk commutes with p and q.

Observe that

(5.2.1) L
phk =" E(hk)p +F (hk)q = hkp.

Since ¢ = 1 — p, it is clear that hk also commutes with g.

Our next claim refers to the second factor of u, namely the element defined
by

v =kp — hq.

Claim 5. One has that v = p — h, and hence v is self-adjoint.

Notice that

v=kp—hgq=(1—-h)p—hg=p—hp—hgq=p—h(p+q) =p—h.

Since both p and h are self-adjoint, the claim follows.
Claim 6. u is self-adjoint.

Since hk commutes with p and ¢, it is clear that hk also commutes with v.
Therefore (hk)~'/? commutes with v. The claim is then a consequence of the
obvious fact that the product of two commuting self-adjoint elements is again
self-adjoint.

Claim 7. wu is unitary.
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We have already seen that u*u = 1, so the result follows from the fact that
u=u".
Claim 8. For every a in A one has that 7(a) = uau=1.
Recalling from Claim 5 that v = p — h, one has

va = pa—ha “'E% ga)p + F(a) - ¢(a)h — F(a) = ¢(a)(p — h) = ¢(a)o.

Since v = (hk)'/?u, one sees that v is invertible, and so
é(a) = vav .
Consequently
m(a) = (hk)"2¢(a)(hk)*? = (hk)™Y ?vav™ ' (hk)Y/? = vau™".
By the universal property of crossed products there is a *-homomorphism
P AN Lo — X,

extending the identity map on A, and sending the implementing unitary w to u.
We then have that

p((hk)*w + h) = (hk)'*p(w) + h = (hk)"*u+h=v+h = p.

It now remains to show that p is bijective. By the computation above we see
that p is in the range of p, and this in turn shows that p is onto.

Let G be the faithful conditional expectation provided by Proposition 7.14.
Then G(p) = h, and hence

G(u) = G((hk)""2(p — h)) = (hk)"/*(G(p) — h) = 0.

If H is the standard conditional expectation from A X, Zs to A, namely that
which is given by
H(a+bw)=a VYa,be A,

we claim that Gp = pH. In fact, we have
G(pla+bw)) =Gla+bu) =a+bG(u) =a=p(H(a+ bw)).

In order to prove that p is one-to-one, assume that © € A X, Zs is such that
p(x) = 0. Then

0=G(p(xz*)) = p(H(xz")).
Since H(zz*) lies in A, and since p coincides with the identity on A, and hence

is injective there, we deduce that H(zz*) = 0. Finally, since H is faithful, we
conclude that x = 0, thus proving that p is injective. O
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9. A non strict finite dimensional example When dealing with tensor
products, one is used to believing that most analytical problems disappear pro-
vided one of the factors is finite dimensional.

Contrary to such expectations, in this section we shall give an example of a
unital C*-blend (A, B, X), with B being a finite dimensional algebra, which is
not strict. In particular, upon identifying A ® B with a subspace of X, we may
view A® B as a normed space which will turn out not to be complete, regardless
of the fact that B is finite dimensional.

In order to prepare for the construction of our counterexample we first consider
the following elementary example: let X denote the C*-algebra formed by all
2 X 2 complex matrices. Given any real number r in the open interval (0,1),
consider the element of X given by

p(r) = d Ve
Vr—r2 1-r ’
which is easily seen to be a projection. We shall also consider its complementary
projection
q(r) =1—p(r).

We shall now describe two subalgebras of X which will form a blend of C*-
algebras. On the one hand we will let A be the subalgebra formed by all diagonal
matrices and, on the other, B will be the subalgebra generated by p(r) and ¢(r).
Clearly B is isomorphic to C?, so we will identify B and C? from now on (however
we will not give much attention to the fact that A is also isomorphic to C?).

We leave it for the reader to prove that the triple (A4, B, X), henceforth also
referred to as (A,C2?,X), is a C*blend. It is also easy to see that, if a =

[ o ] € A, then
Y

(9.1) E(a)=(re+(1-r)y)lz and F(a)= ((1—r)z+ry)l,
where I5 is the identity 2 x 2 matrix. Consider the C*-algebra
X = l(X)

formed by all bounded sequences of elements in X, under pointwise operations.
It is evident that
A% =1 (A)

sits as a subalgebra of X°°.

PROPOSITION 9.1.  Given any sequence {ry}, of real numbers in the open in-
terval (0,1), let p and q be the elements of X given by

P = (p(rn))neN and @Q=1-P.

Then AP + A®Q is a *-subalgebra of X°°, containing A°.
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PROOF.  Throughout this proof we will write p,, for p(r,,). Moreover, when r is
replaced by r,,, the maps described in 9.1 will be written E,, and F,,, respectively.
We first claim that
PA® C A®P + A*Q.

In order to see this, let a € A*°. Then

Pa = (pnan)n = (En(an)pn + F;(an)qn)n = (En(an))nP + (F:(an))nQ

Noticing that the E, and the F,, are uniformly bounded, the above calculation
implies the claim.
It is clear that A is contained in A®°P + A°°(Q), and hence also

QA® = (1 — P)A® C A® + PA® C AP 4+ A™Q.
It follows that
PA>® + QA>® C A®P + A*®Q.

Taking the adjoint on both sides above, we deduce the reverse inclusion and
hence that
PA>® + QA = AP 4+ A>®Q.

In particular it follows that AP + A*(Q is a self-adjoint set and it is now easy
to prove all remaining assertions. U

Based on the above result, the closure of A> P + A*°(Q), here denoted by
X = A%P 1 A=Q,
is seen to be a C*-algebra and consequently
(9.2) (A=,C? X)

is a C*-blend, where we identify C? with the subalgebra of X spanned by P and
Q.

The main question we wish to address here is related to whether or not A P+
A>Q is closed. In fact we wish to prove that this is not the case when the 7,
tend to zero.

PROPOSITION 9.2.  Let {r,}, be a sequence in (0,1) such that

lim r, =0.
n—oo

Then AP + A>Q is not closed in X and hence (A®,C2, X) is a C*blend
which is not strict.
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Proor.  We shall suppose, by way of contradiction, that A% P+A%Q is closed,
and hence that X = AP + A>Q.
From this it follows that

AP =XP={zeX:2Q =0},
which is therefore closed in X. The map
a€ A® —aP € AP

is clearly continuous and bijective, and hence, by the Open Mapping Theorem,
we deduce that it is bounded below, that is, there exists a constant K > 0, such
that

laP|| > Klla|| Va e A™.

Given a positive integer m, let a = (a,), be the element of A> given by

anzémm{l 0}.

Then aP has a single nonzero coordinate in the m!”* position, and that coordinate
is given by

1 T, Vim =12 | |t AT — 12,
AmPm = 0 m 1—r, = 0 0

It follows that
m—r 00
0< K = KHGH < ||CLP|| = ||ampmH = \/m — 0,

a contradiction. O

10. C*-blends and commuting squares Let us now explore a different
class of C*-blends, not necessarily coming from group actions. The initial data
we shall use in the construction to be described in this section is a commuting
square [11], by which we mean that we are given C*-algebras A, B, C' and D,
such that

A DO B
U U
C D D,

and D = BN C. One is moreover given conditional expectations
EFE:A—-B and F:A—C,

satisfying EF' = F'E. Evidently one then has that G := EF is a conditional
expectation onto D.
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Let us now quickly describe Watatani’s version [15] of the celebrated Jones’

basic construction relative to GG. One first introduces a D-valued inner product
on A by the formula

(10.1) (a,b) = G(a™b), Va,be A.
The completion of A relative to the norm arising from this inner product is a

right Hilbert D-module, which we shall denote by M. The left action of A on
itself may be shown to extend to a *-homomorphism

A A— Z(M),

where Z (M) denotes the C*-algebra of all adjointable operators on M. The fact
that

G(a)*G(a) < G(a"a) Va€ A,

which may be easily proven by noting that G(a*z) > 0, where z = a — G(a),
implies that G extends to a bounded linear operator on M, which we denote by
g, and which may be shown to be a projection in £ (M), often referred to as the
Jones projection. It is easy to show that

(10.2) g\ (a)g = A(G(a))g Va € A.

One may similarly show that E and F' extend to bounded operators on M,
respectively denoted e and f, providing projections e and f in Z(M) satisfying

(10.3) eXa)e=A(F(a))e and fA(a)f =A(F(a))f Vae A.
The fact that G = FF = F'FE immediately implies that
(10.4) g=cef = fe.
Given ag, by, as,bs € A, observe that
(Aar)gA(b1)) (Maz)gA(b2)) = A(a1G (braz)) gA(b2),

which implies that the linear span of A\(A)g\(A) is an algebra, easily seen to be
self adjoint. We thus obtain a closed *-subalgebra of .Z(M) by setting

K, =5pan A(A)gA(A).
In an entirely similar fashion we have the closed *-subalgebras

K. =5pan A(A)eA(A) and Ky =s5pan A(A)fA(A).
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PrOPOSITION 10.1.  One has that K. K, KgK., KK, and K,K¢ are all con-
tained in K4, and hence both K. and K; may be naturally mapped into the
multiplier algebra M (K ). We denote these maps by

e : Ko — M(K,) and iy:Kp— M(K,).
ProoOF. Given a,b,c,d € A, and using that g = eg, we have that
(Ma)eA(d)) (A(c)gA(d)) = Aa)eA(be)egA(d) = A(aE(be))gA(d) € Ky,

which proves that K. K, C K,. The remaining inclusions may be proven simi-
larly. O

Question 10.2. Is (K¢, Ky, ic,if, K4) a C*-blend?

My interest in the whole idea of C*-blends actually arose from this question,
to which I still do not have a definitive answer in its full generality. However we
at least have:

PRroOPOSITION 10.3. If either B or C contain an approximate identity for A,
then the ranges of i ® j and j ® i are both dense in K.

Proor. By taking adjoints, it is enough to prove that
K, C span K. Ky.

Let {u;}; be an approximate identity for A contained, say, in B. Then, given x
in the dense image of A within M, we have that

eAug) f(2) = E(ui F(2)) = w E(F(2)) = v;G(x) = Aui)g(@),
which says that eA(u;)f = M(u;)g. Therefore, given a,b € A, we have
AMa)gA(b) = 1izm Aa)A(u; ) g\ (b) = li£n Aa)eX(u;) fA(D)

= lim (M@)eA(u)”?)) (M(u)/?) fA(b)) € span K K. O
This may now be used to state a sufficient condition for Question 10.2.

PrOPOSITION 10.4.  Suppose that either B or C' contain an approzimate identity
for A. If
eA(A)f C Ky,

then (Ke,Kf,ie,if,Kg) is a C*-blend.

PROOF. Once in possession Proposition 10.3 it is enough to prove that the
range of i ® iy, and consequently also of iy ® i., is contained in K,. In other
words we must show that

KK C K,

Given a, b, c,d € A, we have

(M@)e(®)) (M) fA(d)) = Aa)eA(be) fA(d) € Ma) K A(d) € K. O
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This is as much as we can say in the present generality, so let us now con-
sider a somewhat restrictive special case. Recall from [15], that the conditional
expectation G is said to be of index finite type provided there is a finite set

{ula"'aun} g Aa

called a quasi-basis, such that
(10.5) a= ZuiG(ufa) Va € A.

Let us assume for the time being that G is of index finite type. As a con-
sequence G is necessarily faithful [15, 2.1.5] and, as one may easily show, \ is
injective. We shall therefore identify A with its image under A without further
warnings.

Some other aspects of the present situation are also much simplified because
of the following:

PROPOSITION 10.5. If G is of index finite type, let {u,...,u,} be a quasi-basis.
Then

i) Yo wigul =1,
(ii) span AgA = K, = £ (M) = Lp(M), where the latter refers to the set of all
D-linear maps on M.

Proor. Initially notice that, by [15, 2.1.5], A is already complete with the
norm arising from (10.1), so M = A. For every a € M, one then has that

Zuzgu Zu, ua =a,

proving (i). As for (ii), we first notice that the inclusions
span AgA C K, C Z(M) C Lp(M)

are all evident. Given a D-linear map T on M, notice that, for every a € M,

—T(iuiG(ua) ZTuZ ZTuZ Jgula,
i=1

so we see that

n
T= X:T(ul)gu;k € span AgA. O

i=1
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Evidently both e and f are D-linear, as are all operators on M in sight, so we
have that eAf C K ;. Employing Proposition 10.4 we then have the following
affirmative answer to Question 10.2:

ProposiTION 10.6. If G is of index finite type then (Ke,Kf,ie,if,Kg) s a
C*-blend.

Let us now give another partial answer to Question 10.2, this time without
assuming finiteness of the index. Still under the assumption that we are given a
commuting square as above, we will now assume the following;:

STANDING HYPOTHESIS 1. A is a unital commutative algebra and D = C1.

As a consequence G is necessarily of the form
(10.6) G(a) = ¢(a)l Va € A,

where ¢ is a state of A.

Being a right Hilbert D-module, M is nothing but a Hilbert space while A is
just the GNS representation associated to ¢. Using A\ we will view M as a left
A module, and hence we will adopt the notation

an = MNa)n Vae A, ne M.

Denoting the image of 1 in M by &, we evidently have the well known GNS
formula

¢(a) = (a&, &) Vae€ A.

Let us now prove a crucial inequality to be used later.
LeEMMA 10.7. Given a € A, and c4,...,c, € C, one has that
n
> lleaciél® < | E(a*a)] |ul,
i=1
where  is the n x n scalar matriz with p;; = (¢;€,¢;§), fori,j =1,...,n.

PROOF. Since E(1) = 1, one has that e(§) = £, and hence for every a € A we
have

and similarly
(10.7) fa(€) = F(a)¢ Va € A.
We then have

(10.8) Z |eac;&|
i=1

D lIE(ac)él?
i=1
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where b:=Y"" | E(cfa*)E(ac;). Let m be the n x n matrix over A given by

(&1 0 ... 0
C9 0 ... 0
m = . . .
¢, O 0
Observing that
b 0 0
00 ... 0
E(m*a*)E(am)=|. . . s
0 0 0

we see that
6]l = [|E(m*a*)E(am)|| = [|E(am)|]>.

Recall from [12, 2.9] that
IE@y)|* < |E@ )| [E@ )] Va,y € 4,
so we have
O] * *
(10.9) o]l = [|1E(@m)|* = | E(ma)|* < [|E(mm*)| || E(a*a)].

In case the reader is interested in attempting to eliminate the commutativity
hypothesis assumed in Standing Hypothesis 1, we have marked the only two
places in which we used the commutativity of A with an exclamation mark, the
first one appearing in the calculation just above.

The entry (7,7) of the matrix E(mm*) is given by

!

—~
=

E(cic;) = EF(cic;) = ng(cZ-c;-‘)

(ZS(C;CZ') = <C;Ci€7£> = <Ci£,Cj£>7

which precisely says that E(mm*) coincides with the matrix p in the statement.
We therefore have

- (10.8) (10.9) .
> lleaciél* T="¢) < bl < lpllIE(ata)]. O
i=1

Recall that £ is the image of 1 in M, and hence that ¢g(§) = £. Moreover,
given a,b,c € A, let n = ¢£, and notice that

(agb™)(n) = (agb®)(c§) = agb™cg€ = aG(b*c)g€ = aG(bc)§
p(b*c)ag = (c§, b§)ag = (n, b§)ak.
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Since the set of vectors of the form n = ¢ is dense in A, this shows that

(10.10) (agb®)(n) = (n,bE)as,

for every n in M. Given any two vectors (; and (> in M, consider the rank-one
operator ¢, ¢,, defined by

Q) =(n,G)G Ve M.

By 10.10, we then have that
Aa)gA(b*) = Qag pe-

Since £ is cyclic, we may approximate any given (; and (o by vectors of the
form a& and b¢, respectively, and hence one sees that €)¢, ¢, belongs to K. This
proves the following:

ProrosITioN 10.8. K, coincides with the algebra of all compact operators on
M.

We now plan to use Proposition 10.4 in order to obtain an affirmative answer
to Question 10.2. Under Standing Hypothesis 1 we have that D contains the unit
of A, so the first part of the hypothesis of Proposition 10.4 is granted. Therefore
we must only verify that e\(A)f consists of compact operators in order to reach
our conclusion.

THEOREM 10.9. For every a € A, one has that eX(a)f is a Hilbert-Schmidt
operator on M. Moreover, denoting the Hilbert-Schmidt norm by || - ||2, one has
that

leA(a)fll2 < [[E(a*a)[|*? Va € A.

As a consequence eA(A)f consists of compact operators and hence
(Ke,Kf,ie,if,Kg) 18 a C*-blend.

ProoF. Notice that e\(a)f vanishes on the orthogonal complement of f(M).
It is therefore enough to prove that

> leafml* < | E(a*a)].

iel

for any (and hence all) orthonormal basis {n;};cr of f(M). Since the left hand
side is defined to be the supremum of the sums over finite subsets of I, it is
enough to prove that

(10.11) > lleafni|* < || E(a*a)],
=1
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for any finite orthonormal set {n;}_, contained in the range of f. By 10.7 one
has that f(M) is the closure of C¢ in M so, for each ¢ we may write

n; = lim ¢,
k—oco

where {cF}ren is a sequence in C. Let p* be the n x n scalar matrix with
ufj = (cke¢, c?&), as in Lemma 10.7. For all k£ one then has that

Y leacké|? < | E(@ a)ll |lu"].
i=1

Since the n; form an orthonormal set, we have that p* converges to the identity

matrix, so (10.11) follows by taking the limit as k — oo. O
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