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COMPACTIFICATIONS OF C2 vIA
PENcCILS OF JETS OF CURVES

PINAKI MONDAL
Presented by Pierre Milman, FRSC

ABSTRACT.  This article is mainly an announcement of some of the
results in the articles Primitive normal compactifications of the affine plane
I and II where we study normal compactifications of the affine plane from
the point of view of associated pencils of jets of curves and corresponding
valuations on the field of rational functions. We find an explicit criterion to
determine if a discrete valuation corresponds to a normal compactification
of C? which is primitive (i.e., the curve at infinity is irreducible). We show
that a primitive normal compactification of C? is projective iff it is algebraic
iff the associated pencil of jets of curves has a representative which has only
one place at infinity. As an application we compute the moduli space of
primitive projective compactifications of C2. We also characterize primitive
normal compactifications of C2 which are not algebraic.

REsuME. Cet article est principalement une annonce de certains résul-
tats dans les articles Primitive normal compactifications of the affine plane
I et IT ou I'on étudie les compactifications normales du plan affine du point
de vue des pinceaux associés avec les jets de courbes et des valuations
correspondant sur le corps des fonctions rationnelles. Nous trouvons un
critere explicite pour déterminer si une valuation discréte correspond a une
compactification normale de C? qui est primitive (i.e., la courbe & I'infini
est irréductible). Nous montrons qu’une compactification normale primitive
de C? est projective si et seulement si elle est algébrique si et seulement si
le pinceau associé de jets de courbes a un représentant qui n’a qu’un seul
endroit & l'infini. Comme application nous calculons ’espace des modules
des compactifications primitives projectives de C2. Nous avons également
caractérisé les compactifications primitives normales de C? qui ne sont pas
algébriques.

1. Introduction. Every curve at infinity on a normal compactification of
C? (i.e., a normal compact analytic surface containing C?) induces a discrete
valuation on C(x,y), namely the order of vanishing along the curve. It is well
known that discrete valuations on C(z,y) correspond to Puiseux series (see e.g.,
[FJ04, Chapter 4] for a modern treatment). Our starting point in [Monlla] is a
reformulation of the Puiseux series treatment in terms of pencils of jets of curve-
germs (see Definition 2.2), whose generic elements intersect the corresponding
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80 P. MONDAL

curves at infinity at distinct points. The geometries of a normal compactifi-
cation X of C? and its associated pencils of curve-germs determine each other
(e.g., the resolution graph of X corresponds in a natural way to the resolution
graph of the curvettes in the pencils) and it is a goal of this project to extract
information about the former in terms of the latter.

NoOTE . From now on, for the sake of avoiding repetitions, we will omit the word
‘normal’ when talking about compactifications of C2: all the compactifications
will be normal unless otherwise stated.

Compactifications of C? have been studied by a number of authors from dif-
ferent perspectives. FE.g., in [Mor72] and [Bre73] the interest was in classify-
ing the curve at infinity on non-singular compactifications of C2; in [Bre80],
[BDPS81], [MZ88] classes of compactifications of C? were studied as examples
of surfaces with prescribed singularities; in [Fur97], [Oht01] the subject was to
classify primitive compactifications of C? (i.e., those for which the curve at in-
finity is irreducible) which can be embedded into P3; the topic of [Koj01] and
[KT09] was primitive compactifications of C? with prescribed singularities; more
recently compactifications of C? were applied in [FJ11] to study polynomial dy-
namics of C2. Our interest in this subject stems from the study of affine Bezout
type theorems, since an understanding of the structure of compactifications of
an affine variety can pave the way to find number of solutions of polynomial sys-
tems on it (e.g., toric compactifications of (C*)™ yield theorems of Kushirenko
[Kus76] and Bernstein [Ber75]).

In [Monlla] and [Monllb] we mainly consider primitive compactifications
of C?, because they are in some sense the simplest, and because primitive pro-
jective compactifications correspond to the simplest non-trivial classes of iterated
semidegrees which were studied in [Mon10] in relation to affine Bezout type the-
orems. We give an explicit numerical characterization of the pencils of germs of
curve-jets which correspond to primitive compactifications of C? (Theorem 3.6)
and consequently a characterization of the resolution graphs of these surfaces
(Corollary 3.7). In [Monlla] we also calculate some invariants of these surfaces,
e.g., we calculate the canonical class and determine the precise type of singularity
corresponding to the zeroth jet of the pencil.

Let X be a primitive compactification of C2. The local geometry of X near
the curve at infinity is determined by the germs in the associated pencil, but the
global geometry of X depends on global representatives of the pencil. In particu-
lar, we show that a primitive normal compactification of C? is projective iff it is
algebraic iff one of the curvettes in the associated pencil can be represented by a
plane curve with only one place at infinity (Theorem 3.8). Both primitive projec-
tive compactifications of C? and plane curves with one place at infinity are much
studied subjects (see e.g., [AMT73], [AMT75], [Gan79], [Rus80], [NO97], [Suz99] for
the latter), and we believe the connection we found between these two objects
will be useful for the study of both. In particular it would be interesting to relate
our results to that of [CPRO5] (who also consider a class of compactifications
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associated to a particular type of pencils of curvettes) and [FJ07].

As an application of Theorem 3.8 we compute explicit equations of primi-
tive projective compactifications of C? from the Puiseux series of the associated
pencil of curve-germs (Corollary 3.11) and calculate the moduli space of prim-
itive projective compactifications of C? with a fixed normal form of Puiseux
pairs (Corollary 3.14). The defining equations and moduli space of primitive
projective compactifications correspond in a natural way to the equations and
moduli space of plane curves with one place at infinity, the latter being stud-
ied in [Oka98] and [FS02]. In particular, it follows from the defining equations
that the curve at infinity is non-singular. Moreover, the preceding results give a
characterization of primitive compactifications of C2 which are not algebraic.!

Fix polynomial coordinates (z,y) on C2. Then for every primitive compact-
ification X of C?, the order of vanishing along the curve at infinity induces a
discrete valuation v on C(xz,y). It is straightforward to see that

(%) v(f) <0 forall f € Clzr,y]\C, and v is divisorial,

i.e., the transcendence degree of the valuation ring of v over C is 1. Moreover,
it is not hard to see (e.g., by the universal property of normal varieties) that v
uniquely determines X, i.e., if Z is another primitive normal compactification
of C2 such that the order of vanishing along Z \ C? equals v, then Z = X. This
gives rise to a natural question:

QUESTION 1.1. Does every discrete valuation on C(z,y) that satisfies (x) come
from a primitive compactification of C2?

One of the motivating factors of this study was to understand Question 1.1
and we give a complete answer (see Remark 3.18).

Our article is organized as follows. In the next section we set up the prelimi-
nary notions of jets of curve-germs and reformulate the Puiseux series treatment
of discrete valuations on C(z,y) in terms of curvettes. We apply this reformu-
lation to find an upper bound on number of singular points on compactification
of C? and a description of resolution graphs of primitive compactifications of C2.
In Section 3 we state our main results. Section 4 contains our conjecture on al-
gebraic contraction of curves. We also give an explicit example of two primitive
compactifications of C? with one singular point such that they have the same
resolution graph, yet one is algebraic and the other is not.

I heartily thank Professor Pierre Milman. This work is essentially an attempt
to understand some of his questions in a simple case and the exposition prof-
ited enormously from speaking in his weekly seminar and from his questions.
Very special thanks also go to Dmitry Kerner—his questions forced me to think

1The non-algebraic normal completions of C? provide examples of non-algebraic normal
Moishezon surfaces that can be constructed from from blowing down rational curves from
rational surfaces. This phenomenon does not seem to be recorded in the literature, e.g.,
the constructions in [Nagh8] and [Gra62] of non-algebraic normal Moishezon surfaces involve
blowing down non-rational curves.
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and formulate the results in geometric and much more understandable terms;
examples include formulations of compactifications in terms of curvettes (I also
learned of the word ‘curvette’ from him) and the geometric interpretation of
Lemma 3.19.

2. Valuations and pencils of curvettes. Our approach to understand
valuations was based on Puiseux series associated with them, and this led us to
consider associated pencils of curvettes (to be defined below) which, although
formally equivalent to the Puiseux series description, are perhaps more geometric
(¢f. Proposition 2.8 and the proof of Proposition 2.9).

DEFINITION 2.1 (Meromorphic Puiseux series). A Meromorphic Puiseuz series
in a variable u is a fractional power series of the form 3., aju!/™ for some
k,m e Z, m>1and a; € Cfor all [ € Z. If all exponents of u appearing in a
meromorphic Puiseux series are positive, then it is simply called a Puiseux series
(in ). Given a meromorphic Puiseux series ¢(u) in u, write it in the following
form:
a a3 _u
qﬁ(u) — ... + aiurl + e + AU P1P2 J'_ “e _|_ aluplpzmpl + P

where ¢;/p; is the first non-integer exponent, and for each k, 1 < k < [, we
have that p, > 2, ged(pk, gx) = 1, and the exponents of all terms with order less
than pl?_’f‘ belong to ——~——7. Then the pairs (q1,p1),---,(q,p1), are called

Pk P1Prk—1
the Puiseur pairs of ¢ and the exponents qx/p1---pr, 1 < k < [ are called

characteristic exponents of ¢. The polydromy order of ¢ is p1---py.

DEFINITION 2.2. Let O be the origin in C? and (u,v) be analytic coordinates
near O. Given a positive rational number w and two irreducible analytic germs
C1,Cy of curves at O, we say that C1 =, C> iff there are Puiseux series
expansions v = ¢;(u) for C;, 1 < i < 2, such that ord,(¢1 — ¢2) > w. A
(u,w)-jet J of curve germs at O is an equivalence class of analytic germs at O
modulo the equivalence relation =, ,,. A curve-germ C representing J is called
a curvette, if it also satisfies the following condition:

(xx)  All the characteristic exponents of the Puiseux expansion of C in u
are less than or equal to w.

Note that (xx) is simply the algebraic way of saying that C is the ‘least singular’
of all representatives of J. Frequently we will simply say w-jet or w-curvette
when the variable u for the Puiseux series expansions is clear from the context.
By a pencil of w-jets at O we mean a family £ of curve-germs of the form
{[p(u) + &u”] : € € C} for a finite Puiseux series ¢ in u such that ord,(¢) > 0
and deg, (¢) < w (note that here we identified curves with their Puiseux series
expansions in u). If the polydromy order of ¢ is p, then let p’ be the smallest
positive integer such that ¢’ := pp’w € Z. Then the formal Puiseux pairs of L
are the Puiseux pairs of ¢ with the pair (¢/,p’) appended at the end. We say
that (¢/,p’) is the generic formal Puiseux pair for L.
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REMARK 2.3. Our definition of curvettes is equivalent to those in [MF11] and
[CPRO5].

A simple reformulation of the theory of discrete valuations and Puiseux series
(as developed in [FJ04]) yields the following correspondences (recall that a val-
uation v is centered at a point P iff the maximal ideal of the valuation ring of v
contains the maximal ideal of P):

THEOREM 2.4 (cf. [FJ04, Proposition 4.1, Theorem 4.17]). There is a one-to-
one correspondence among the following three families:
(i) Divisorial discrete valuations v on C(u,v) centered at the origin and nor-
malized, in the sense that ged(v(f) : f € C(u,v)) = 1.
(ii) Finite Puiseux series ¢ in u up to conjugacy and a rational number r such
that ord, (¢) > 0 and r > deg,,(¢).
(iii) Pencils L of r-jets of curve-germs at the origin for r € Q, r > 0.
The correspondence (ii) to (i) is given by (¢,r) — vy, where for every f €
C(u,v),

Ve.r(f) == pord, (f(u, o(u) + Eur)),

where & is an indeterminate and p is the lowest common multiple of denominators
of r and exponents of u in ¢. The correspondence (iii) to (i) is given by L — v,
where for every f € Clu,v],

ve(f) = intersection multiplicity at the origin of V(f)

and a generic curvette in L.

EXAMPLE 2.5. If v is the order of vanishing at O and (u,v) are analytic
coordinates at O, then the pencil corresponding to v is {€u : £ € C}. Let
L= {au+ &u? : £ € C} for some a € C*. Then £’ corresponds to the order
along a point on the exceptional divisor of the blow up of the origin.

Let U be a neighborhood (either in analytic or algebraic sense) of O. We say
that U is a birational lift of U if there is a regular birational map m: U — U.
We say that a curve C' on U realizes a divisorial valuation v iff v is precisely
the order of vanishing along C. Since the order of vanishing function uniquely
determines a curve on a surface, and since C? is normal, the following lemma is
almost immediate:

LEMMA 2.6. Let v be a divisorial discrete valuation centered at O. In any
birational lift of a neighborhood of O, there is at most one curve that realizes v.
If U, and Uy are birational lifts of a neighborhood of O and C; on U; realizes v,
then for generic z € Cy, the birational map Uy --» Uy maps z to a point on Cg
and restricts to an isomorphism near z. O

We say that a curve C on a birational lift U of U separates a pencil L of w-jets
at O, iff C maps to O and strict transforms in U of (representatives of) curves
representing generic elements in £ intersect C at generic points.
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ExamMpPLE 2.7. Let F be the exceptional curve of the blow up of O. Then F

separates the pencil of jets of curve-germs corresponding to the order of vanishing
at O.

Theorem 2.4 and Lemma 2.6 give the following characterization of curves that
realize a given valuation.

PROPOSITION 2.8. Let v be a divisorial discrete valuation centered at O and L,

be the corresponding pencil of jets of curve-germs. Let C be a curve on a bira-
tional lift of a neighborhood of O. Then C realizes v iff C' separates L, .

ProoOF. Let Uy be a neighborhood of O with analytic coordinates (u, v) and £,
be the pencil of jets of curve-germs at O corresponding to v. We now construct
a finite sequence of blow-ups Uy — Uix_1 — -+ — Uy. Let U; be the blow-up
of Uy at O. Now assume that ¢ > 1 and U; has been constructed. Let E; be
the exceptional divisor of the blow up U; — U;_;. If the strict transforms of
generic germs in £, intersects F; at generic points, then stop the sequence and
set k := i. Otherwise the strict transforms of all germs in £, passes through a
unique point O; of E;. Let U;1 be the blow-up of U; at O;. It follows from
the classical theory of valuations centered at two dimensional local rings and the
third definition of v (in terms of intersection multiplicity) in Theorem 2.4 that
the sequence of U;’s is finite and the ‘last’ exceptional divisor Ej, realizes v on
Uy (see, e.g., [CPRO5, Section 2]).

Now we prove the proposition. Let C be a curve on a birational lift U of a
neighborhood U. Let ¢: Uy, --» U be the natural birational map (induced by the
identification of a neighborhood of O). If C realizes v, then Lemma 2.6 implies
that ¢ maps generic points on F to generic points on C. Then it follows from
the construction of Fj that the strict transforms of generic curve-germs of L,
intersect C' at generic points. This proves (=) direction of the proposition.
Conversely, if strict transforms of curve-germs in L, intersects generic points
on CY, this forces ¢|g, : Ex --+ C to be generically finite-to-one. It follows from
normality of U and U, that ¢ restricts to an isomorphism near generic points of
FE, which implies that C' realizes v, as required. O

We now apply Theorem 2.4 to estimate the maximum number of singular
points of compactifications of C2. The main argument is a basic property of
the resolution graph of plane curve singularities (which was explained to me by
Dmitry Kerner).

PROPOSITION 2.9. Let X be a compactification of C2. Assume that X \ C2
has N irreducible components. Then | Sing(X)| < 2N, where Sing(X) is the set
of singular points of X. In addition, if X is also a minimal compactification

of C? in the sense that none of the curves at infinity can be contracted, then
| Sing(X)| <N + 1.

PROOF. Let X :=P? be the usual compactification of C? via the embedding
(,y) = ([ : y : 1]) and let X be an arbitrary compactification of C2. Assume
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X \ C? has N components at infinity and let vy, ..., v, be valuations distinct
from — deg on C(z,y) corresponding to the curves at infinity on X. In particular,
either m=Norm=N — 1.

Applying the construction of the proof of Proposition 2.8 to the center of 14
on Xy, and then to the center of v5 on the resulting surface and so on, we
may construct a finite sequence of blow-ups X; — X, 1 — --- — X, such
that each v, 1 < j < m, is realized on X, by one of the exceptional divisors.
Let Ey be the line at infinity on Xy and for each [, 1 <[ < s, let E; be the
exceptional divisor from the blow up X; — X;_; and I'; be the ‘augmented
resolution graph’, i.e., I'; is the graph which has [ + 1 vertices eg,...,e; and
there is an edge between e; and e; iff the strict transforms of £; and E; intersect
in X;. Then it is straightforward to see (see e.g., [Spi90b, Remark 5.5]) that for
each [, there are only two possibilities for the transformation from I'; to I'jy1:

(]
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In particular,

(1) T is connected.

(2) E; intersects at most two distinct E;’s in Xj; denote them as Ej, and Ej,
(possibly Iy = 11).

(3) If T is a connected component of T’y \ {e;} which does not contain e, or e, ,
then all the divisors of T' can be contracted to a non-singular point.

Observations (1) and (2) imply that for each k¥ > 1, blowing down all but k

of the E;’s from X, introduces at most 2k singular points. Since X can be

constructed from X by blowing down all but IV of the E;’s, this proves the first

assertion. Observation 3 and the minimality assumption on X then prove the

last assertion. (]

Now assume X is a singular compactification of C2. Then X, constructed
in the proof of Proposition 2.9 is a desingularization of X, and the correspond-
ing resolution graph is determined by the resolution graph for the plane curve
singularities whose branches are precisely the curvettes in £,,,...,L,,. We
now give a more detailed description of the resolution graph in the case that
X is primitive (i.e., X \ C? is irreducible). Recall that the resolution graph
of a plane curve singularity is uniquely determined by its Puiseuz pairs. More
precisely, assume that the Puiseux pairs of an irreducible plane curve singular-
ity are (q1,p1),---,(@m,Pm). Then the dual weighted graph (the weight of a
vertex being the self-intersection number for the corresponding divisor) for the
minimal resolution of the singularity is as in Figure 1, where we denoted the
‘last exceptional divisor’ by e* and the left most vertex by e; (and left all other
vertices untitled). The weights v} and v! satisfy: uf,v > 1 and ul,v] > 2

17 71
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for j > 0, and are uniquely determined from the continued fractions (see, e.g.,
[BK86, Section 8.4]):

_ _ r.o_
— = Uy — T = — ,  where ¢; :==¢; — gi—1p;-

Note that (p1,41),-- -, (p1,q]) are the Newton pairs of the curve branch, i.e., the
Puiseux series of the branch is of the form:

w(u):-~-+uﬁ<a’1+--~+uﬁ(a’2+-~-+um(---))>.

Now let v be the discrete valuation corresponding to the curve at infinity of X.
Without loss of generality we may assume that v is centered at O :=[1:0:0] €
P? and let u := 1/x and v := y/z be coordinates near O. Then an examination
of the construction of X, yields the following description of the ‘augmented
resolution graph’ of the desingularization X; — X (i.e., I's of the proof of
Proposition 2.9) in terms of the resolution graph of generic curvettes in £,. Let
(q1,P1)s- -+, (Gm,Pm) be the Puiseux pairs (for Puiseux series expansion in u) of
generic curvettes in £,, and let (¢/,p’) be the generic formal Puiseux pair of £,.
Then there are two possibilities: either (¢/,p") = (¢m,Pm) or p' =1 and ¢’ > gu.

PROPOSITION 2.10. Let X be a primitive compactification of C2, T' be the aug-
mented resolution graph of Xs — X constructed in the proof of Proposition 2.9
and let (g;,pj), 1 <j <m and (¢',p") be as above.

(i) If p' = pm, then T is as in Figure 2a, where I is as in figure 1. The vertex
of T corresponding to the strict transform of the curve Cs, := X \ C? is e*
(see Figure 1). In particular, one of the (at most two) singular points of X
is a cyclic quotient singularity.

(ii) If p’ =1, then T is as in figure 2b, where I'' is the graph of Figure 1 with
one change - namely the self-intersection number of e* in I is —2. The
vertex on T corresponding to the strict transform of C is e. In particular,
X has one singular point.
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REMARK 2.11. Note that in the case that u{ = 2, the resolution of Proposi-
tion 2.10 is not minimal. We determine the minimal resolution of X in [Mon11a]
by a case-by-case computation.

REMARK 2.12. Let I' be a graph of one of the forms in Figure 2. Then I' is a
dual graph for a resolution of singularities of a primitive compactification of C2
iff the intersection product restricted to the connected components of T'\ {v}
(where v := e* if T' is as in Figure 2a and v := e if T" is as in Figure 2b) is
negative definite. We give explicit formulze in Corollary 3.7 to determine this
negative definiteness and in Corollary 3.10 to determine if the result of blowing
down corresponding exceptional divisors is a projective surface.

Before we proceed to state our main results in the next section, we introduce
degree-wise Puiseux series corresponding to valuations centered at infinity.

DEFINITION 2.13. Let (x,%) be polynomial coordinates on C? and let C? —
X := P? be the embedding given by (x,y) — [z : y : 1]. A degree-wise Puiseus
series in x is a meromorphic Puiseux series in z~!. For a discrete valuation v
on C(z,y), we say that v is centered at infinity iff there exists f € C|x,y] such
that v(f) < 0. Assume v is centered at infinity and v # — deg, where deg is the
usual degree of polynomials in (z,y)-coordinates. Then there is a unique point
O € X \ C? such that v is centered at O. After a linear change of coordinates if
necessary we may assume that O has coordinates [1: 0 : 0]. Then u := 1/z and
v := y/x are coordinates near O and therefore generic curve germs in £, have
Puiseux series expansions of the form

v = ¢(u) + &u” + (higher order terms), or equivalently,
y = xé(1/x) 4+ 217" + (lower order terms),

for generic £ € C. We say that 1, (x,€) := x¢(1/x)+£x1 7" is the generic degree-
wise Puiseur series in x associated to v. The formal Puiseux pairs of 1, are
precisely (pip2 - pr — @k, k), 1 < k <1+ 1, where (qx,pr), 1 <k <141, are
the formal Puiseux pairs of £, with respect to u. As in the case of £,, the last
formal Puiseux pair of v, is called the generic formal Puiseux pair. It follows
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from Theorem 2.4 that for all f € C(x,y),

2)  v(f(a,y)) = —pdeg,(f(z,¢n(2,€))), wherep:=pi- prs1.

3. Main results.

PROPOSITION 3.1. Let Xy be a primitive projective compactification of C? and

v be a discrete valuation on C(x,y) centered at infinity. Assume v is not the

valuation associated to the curve at infinity on Xo. Then there exists a normal

projective compactification X of C? and a morphism m: X — X such that
(i) X \ C? consists of two irreducible curves D and E,

(ii) 7 contracts E to a point and restricts to an isomorphism on X \ E,

(iii) Let P be the point of intersection of D and E and L, be the pencil of jets
of curve-germs at infinity corresponding to v. Then there is a one-to-one
correspondence ¢: E\ P — L, such that for every z € E '\ P, the strict
transform of a curve-germ C at infinity on P2 passes through z iff C is a
representative of ¢(z).

REMARK 3.2. Assertion (iii) of Proposition 3.1 in particular implies that the
strict transform on X of every curve-germ at infinity on Xy which does not
represent any element of £, passes through P. This suggests that P corresponds
to the point at infinity of the pencil £,.

ProOF. We only give a sketch of the proof in the case that Xy = P2. The
general case is proved in [Monlla] by different arguments (which are much more
elementary and ‘constructive’, but also much more lengthy). So assume X, = P2.
Recall the construction of X from the proof of Proposition 2.9. Let X be
constructed (as a normal analytic surface) from X by contracting all but one
of the exceptional divisors. In particular, the projection 7: X, — X, factors
through X. Since Xy is non-singular, it follows that every singularity of X
is sandwiched (in the terminology of [Spi90a]), and therefore rational [Spi90a,
Remark 1.15]. It follows that X is projective by a criterion of Artin [Art62,
Theorem 2.3]. Assertions (i)—(iii) follow from the constructions of X, and X.

O

Let v and X be as in Proposition 3.1. Then v corresponds to a primitive
compactification of C? iff the curve D on X can be contracted to a (normal)
point. It follows from Grauert and Artin’s criterion that the latter is possible
iff the self intersection number of D is negative. In [Monlla] we compute the
intersection matrix of D and E and consequently find an explicit criterion for
determining if v corresponds to a primitive compactification of C2.

DEFINITION 3.3. Let v be a divisorial discrete valuation on C(z,y) centered at
infinity and let ¢, (z,€) := ¢¥(x) + £2" be the generic degree-wise Puiseux series
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corresponding to v. Let
k
H y— U (x) - &),

where 19)’s are the conjugates of ¥. Let U* be the sum of all terms in ¥,, which
are monomials in x,y and whose v-value is less than or equal to the v-value of
every monomial for which the exponent of ¢ is non-zero. Then ¥ € Clz, 271, y].
Let s, := —v(T}).

REMARK 3.4. If v is the negative of usual degree in (z,y) coordinates then
Y, = €x, so that ¥, =y —Ex, s, =1 and ¥}, = y. Note that {V( (x,y, 5))
¢ e (C} is a family of curves in P? which represents the pencil of jets of curve-
germs at infinity corresponding to —deg and U} is a representative of the jet
corresponding to £ = 0. The latter statement remains true for general v: the
curve O, defined by ¥* in P2 is in a sense the ‘simplest’ global curve which
represents the zero-th jet of v at the center O of v on the line at infinity of P2.
Whether C), intersects the line at infinity at any other point except O turns
out to be a deciding factor in determining if v can be realized by a primitive
projective compactification of C? (see Theorem 3.8 and Lemma 3.19).

REMARK 3.5. It is straightforward (by induction on number of formal Puiseux
pairs) to find an explicit formula for s, in terms of Puiseux pairs of ¢ and r.
Indeed, if the formal Puiseux pairs of ¥, are (q1,p1), - - -, (q1,21), (qi+1, Pi+1), then

(3)

v = Z Z (pi; = D(pi; o, = 1) (Piy — 1)@, pi+1 -+ Prg1 + Q-

j=1 1§i1<"'<ij£l

THEOREM 3.6. v corresponds to a primitive compactification of C? iff s, > 0.

As an immediate application we find a characterization of graphs that arise
from resolutions of singularities of primitive compactifications of C2.

COROLLARY 3.7. Let T be a weighted graph as in Figure 2. Define (q1,p1),.- .,
(qm,Pm) from the continued fractions in (1). If T is as in Figure 2a, then set
l == m — 1. On the other hand, if I' is as in Figure 2b, then define | := m,
piy1 =1 and qy1 := q + 1+ 1, where I is the length of the ‘right-most’ string
of (—2)-vertices starting from e*. Finally, calculate sy by the same formula of
s, in equation (3). Then T is the dual graph corresponding to a resolution of a
primitive compactification of C? iff 1 < p1 and (p1 -+ p1)?pie1 > st O

Theorem 3.6 gives a criterion to determine which discrete valuations corre-
spond to primitive compactifications of C2, but gives no information as to de-
termine if the compactification is algebraic or projective. Theorem 3.8, which is
the main result of [Mon11b], gives an explicit answer.
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THEOREM 3.8. Let v be a divisorial discrete valuation on C(x,y) centered at
infinity, and L, be the pencil of jets of curve-germs at infinity corresponding
to v. Then the following are equivalent:
(i) v corresponds to a primitive projective compactification of C?;
(ii) v corresponds to a primitive algebraic compactification of C2;
(iii) one of the r-jets in L, can be represented by a plane curve with one place
at infinity;
(iv) the zeroth r-jet (i.e., the one which corresponds to & = 0) in L, can be
represented by a plane curve with one place at infinity;
(v) s, >0 and U} € Clz,y| (where U}, s, are as in Definition 3.3).

v

REMARK 3.9. Theorems 3.6 and 3.8 imply the following characterization of
primitive compactifications of C? which are not algebraic: they correspond to v
such that s, > 0 and ¥} & Clz,y] (¢f. Example 4.1).

Theorem 3.8 gives a characterization of resolution graphs of primitive pro-
jective compactifications of C2. Indeed, let v be a valuation on C(z,y) cen-
tered at infinity corresponding to a primitive projective compactification of C2
and let 1, (x,&) = ¥(x) + £2" be its generic degree-wise Puiseux series. Let
(G1,p1)s- -+, (@, 1) (@11, Pra1) be the formal Puiseux pairs of 1, (in particular,
the first [ pairs are precisely the Puiseux pairs of ¢ (z)). Let so := pip2- - pi,
and for each k, 1 < k <, define

k-1
(4) Sk 1= Z Z (pi; = D)(pi;_, — 1)+~

j=1 1<iy <---<ij<k—1
o (piy — V)i Divg1 01+ Qi1 - D

Then p;y150,-..,m+15 and s, generate of the semigroup of poles at the place
at infinity of the curve C' := V(¥%) (it is a consequence of Theorem 3.8 that C
is a planar curve with one place at infinity). Consequently, so, ..., s; satisfy the
semigroup condition of Abhyankar—-Moh [AM73]; in particular,

(S) prsk is in the semigroup generated by sq,...,sk—1 for each k, 1 <k <.

COROLLARY 3.10. LetI" be a weighted graph as in Figure 2. Define (q1,p1), ...,
(@141, pi+1) as in Corollary 3.7. Set Gy :=p1...pk—qk, for 1 <k <1, and define
S0,---,8; as above. Then I is the dual graph corresponding to a resolution of a
primitive projective compactification of C? iff the conditions of Corollary 3.7 are
satisfied and in addition (S) also holds.

The proof of Theorem 3.8 is actually constructive in nature, in the sense that
it gives the list of all equations defining primitive projective compactifications
of C? in terms of a fixed coordinate system (z,y) of C2, and consequently, the
moduli space of primitive projective compactifications of C2. More precisely, we
have the following corollary.
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COROLLARY 3.11. Let X be a primitive projective compactification of C* and v
be the corresponding valuation on C(xz,y) centered at infinity. Let p1,...,p1+1,
S0, - -+, 8; be as above and set s;y1 := s,. Then X is isomorphic to a subvariety of
the weighted projective space PF2(1, p1i180, ..., Pis151, S141) (with weighted ho-
mogeneous coordinates [w : x : yy : -+ : yi41]) defined by weighted homogeneous
polynomials gi, 1 < k <1, of the form:

(5) gk v= WPy

_ (ygk + akxakyfk,l » ~y;ff”f71 + Z bagwmagl'ayfl .. 'ygk)’
(,B)eny,

where
(1) (ks Br1s---» Bk k—1) is the unique collection of non-negative integers such
that B ; < pj for each j, 1 <j<k—1, and agp + Zf;l Bk.,jS; = PkSk,
(il) Ag = {(a,ﬂl,.é.,ﬂk) € Nkt . 8, < p; for each j, 1 < j < k—1, and
Sk+1 < ap+ )i Bisj < prsk},
(iii) ay € C*,
. k .
(iv) b,z € C and m_z = pysi — (ap + 32—, B;s;) for each (o, B) € Ay.
Conwersely, every collection of equations g1, . . ., g, defined by equation (5) defines
a primitive projective compactification of C? with formal (degree-wise) Puiseuz
pairs (qlvpl)a R (ql+1apl+1)'

REMARK 3.12. In particular, every primitive projective compactification of C?
is a weighted homogeneous complete intersection.

REMARK 3.13. Note the similarity of (5) with the description in [FS02, The-
orem 7] of plane curves with one place at infinity. In fact, given Theorem 3.8,
Corollary 3.11 and [FS02, Theorem 7] are equivalent. It follows that the struc-
tures of moduli spaces of primitive projective compactifications of C2 and planar
curves with one place at infinity are also similar (¢f. Corollary 3.14 and [FS02,
Corollary 1]).

To calculate the moduli space of primitive projective compactifications of C2
up to isomorphism, it is necessary to put the generic degree-wise Puiseux series
¥, (x,€) = P(x) + €2” of the corresponding valuation v in a ‘normal form’.
Let the formal Puiseux pairs of ¥ (z) be (¢1,p1),-.-,(@+1,P141). Then it is
straightforward to see (e.g., by induction on number of Puiseux pairs) that after
a change of coordinates if necessary we may assume that one of the two following
(mutually exclusive) conditions hold:

(N1) v =0 (so that I =0) and p; > ¢1 > 1, or

(N2)l>1andp; > ¢ > 1.

We say that the formal Puiseux pairs of v are in the normal form if either (N1)
or (N2) holds; in which case, we will simply say that the normal form of v is
(((jl,pl), ey (ql+1,pl+1)). Using the fact that the polynomial automorphisms of
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C? are tame [Jund2], it is not hard to see that the normal form is unique for a
given v.

COROLLARY 3.14. Let X be a primitive projective compactification of C2 and
let (G1,p1)s- -+, (Qi+1, Pi+1) be the normal form of the valuation v on C(x,y) cor-
responding to the curve at infinity on X. Let sq, ..., s;+1 be as in Corollary 3.11.
Then X 1is isomorphic to a subvariety of Pl+2(1,pl+1so, ey DI4181, Si41) defined
by a unique collection of weighted homogeneous polynomials (g1, ..., g1) given by
equation (5). In particular, the moduli space X«iﬁ of primitive projective com-
pactifications of C? with normal form (qi,p1),-- -, (Gi+1,P141) is isomorphic to
(C*)! x CMN where \; := Zic:l [Ak] (A, 1 <k <1, being as in Corollary 3.11).

REMARK 3.15. In particular, the only primitive compactifications of C? for
which the normal form has only one pair (i.e., I = 0) are weighted projective
surfaces P2(1,p, q).

REMARK 3.16. Using Theorem 3.6, the moduli space X, of primitive analytic
compactifications of C? can be computed in the same way in terms of coefficients
of the associated degree-wise Puiseux series. In particular, the moduli space
Xonip for a given normal form (Gi,p1),- - -, (Gi+1, pir1) has the form (C*)! x CN
for some A > 0 (which counts, in the same way as );, the cardinality of some
set of indices) and Xz - is a closed subvariety of X, = (it is of course possible
that Xtiﬁ is empty or equals Xan,{iﬁ)'

As a final application of Theorem 3.8, we give an effective answer to Ques-
tion 1.1. More precisely, we answer the following question: given the degree-wise
Puiseux series for a discrete valuation v centered at infinity, is it possible to

effectively determine if v < 0 on all non-constant polynomials?

PROPOSITION 3.17.  Let v be a discrete valuation on C(x,y) centered at infinity.
Let s, and ¥}, be as in Theorem 3.8. Then

(1) v is non-positive on Clz,y] iff s, > 0;

(2) v is negative on all non-constant Clx,y] iff either
(a) s, >0, or
(b) s, =0 and ¥} ¢ Clx,y].

REMARK 3.18. In particular, the answer to Question 1.1 is negative: there are
divisorial discrete valuations which are negative on all non-constant polynomi-
als in C[z,y] but do not correspond to any primitive compactifications of C?,
namely those which satisfy (2b) of Proposition 3.17. For example, let v be the
valuation corresponding to degree-wise Puiseux series 1, := 2/° 4z~ 4+ £x=8/5
(in particular, as equation (2) implies, v(f(z,y)) = —5deg, (f(z,1,)) for all



COMPACTIFICATIONS OF C2 93

f € C(x,y)). Then

U, =[] (y— <2k1,2/5 ! +€z—8/5) (where ¢ := 6271'1'/5)

5
k=1

=y° — 2% — b1yt — 5§x_%y4 + (higher order terms)
(where ‘higher order terms’ means higher order w.r.t. v)

Sy = —Z/(x*%y‘l) =0, U:=y®—a2® 52"y ¢ Clx,yl

It follows that v satisfies assertion (2b) of Proposition 3.17 and therefore does
not correspond to any primitive compactification of C2.

We end this section with stating a lemma (essentially about factorization of
polynomials) which is the main technical ingredient in the proof of Theorem 3.8
and seems interesting in its own right. Let O € P? and (u,v) be linear affine
coordinates at O (that is u = 0 and v = 0 are lines in P?).

LEMMA 3.19. Let J be an (u,w)-jet at O for some w > 0 and let L C P? be the

line u=0. Then the following are equivalent:

(1) There is an algebraic curve C C P? such that C intersects L only at O and
each branch of C' at O belongs to J .

(2) There is an algebraic curve C C P? such that C intersects L only at O, C is
untbranch at O, and the branch of C' at O belongs to J.

4. Examples, remarks and conjectures.

ExaMpPLE 4.1. Consider the families of curve germs at infinity with degree-wise
Puiseux expansions:

Y= 1?01(:6’6) = I2/5 + 55677/5, y= 7/’2(1'75) = $2/5 + 1'71 + 61’77/5,

where £ varies in C. These correspond to families of curve-germs at O :=
[1:0:0] € P? (the embedding C?> — P? being as (z,y) +— [r:y:1]). Indeed,
in coordinates given by w := 1/z and v := y/z, the equations y = 9;(z,§),
1 < j < 2 translate to the following:

v =5 4 eul?5, =B 4?4 eul?/,

Theorem 3.6 and Proposition 2.10 imply that for each j, 1 < j < 2, the family
of (12/5)-jets at O associated to y = ;(z,§) corresponds to a primitive an-
alytic compactification X; of C? with the ‘augmented resolution graph’ (as in
Proposition 2.10) as in Figure 3. (The dual graph for the minimal resolution
of X;’s are constructed by removing e and e; from Figure 3 and changing the
weight of the vertex next to e; from —3 to —2.) In particular, both X; and X»
are analytic compactifications of C? with a unique singular point and the same



94 P. MONDAL

1 3 =2 2 2 -
o o
e e

string of 8 vertices of weight -2

Figure 3

resolution graph. It is straightforward to see that ¥} = y° — 2%, which implies
via Theorem 3.8 that X; is projective. A direct application of Corollary 3.11
shows that X7 is the hypersurface in P3(1,5,2,1) (with weighted homogeneous
coordinates [w : z : y : 2]) defined by the equation w%z = 22 — ¢®. On the other
hand, U3 = 5 — 22 — 527 1y*, and therefore X, is not even algebraic!

REMARK 4.2. It is easy to find (in essentially the same way as in Example 4.1)
examples of non-algebraic compactifications of C? with arbitrarily many irre-
ducible curves at infinity.

Theorem 3.8 and Lemma 3.19 give a criterion (which also follows from Zariski-
Fujita Theorem [Laz04, Remark 2.1.32]) for algebraically contracting a chain of
rational curves on a non-singular compactification of C2. More general forms of
this question was considered in [Art62], [Art66] and [Sch00]. The criterion ()
is more in the spirit of [Sch00] which gives a characterization for contractible
curves in terms of complementary Weil divisors.

(¢) Let X be a normal compactification of C2, D C X \ C? and E be the
union of the irreducible curves in X \ C? excluding the components of D.
Assume that E is analytically contractible (i.e., the intersection matrix
of components of E is negative definite) and D is irreducible. Then
E is algebraically contractible iff there is a curve C' C C? such that
cnNnD=g.

Another equivalent formulation of () is

(%) A primitive normal compactification X of C? is algebraic iff for every
point P € X, there is a curve C' C C? such that P ¢ C.

CONJECTURE 4.3. Statement ({) remains true without the assumption that
D is irreducible; equivalently, (&) remains true for all (i.e., not necessarily prim-
itive) normal compactifications of C2. In addition, if E of statement ({) is
algebraically contractible, then it is in fact projectively contractible (i.e., the
contraction of E on X produces a projective surface).

QUESTION 4.4. More generally, we ask: does (&) remains valid for X being
arbitrary rational normal Moishezon surfaces (with C? being replaced by an open
subset U C X which is isomorphic to an open affine subset of (CQ)?



COMPACTIFICATIONS OF C2 95

If Conjecture 4.3 is indeed true, then determining the algebraicity of a normal
compactification of C? will involve answering the following question:

(#) Given finitely many (not necessarily distinct) points Py, ... P, on a line
L C P? and curve-jets Ji centered at Py, 1 < k < m, when does there
exist an algebraic curve C' C P? such that CN L C {Py,...,P,} and
each branch of C at a point in C' N L belongs to one of the J’s?

QUESTION 4.5. In particular, we ask: can (#) be answered effectively?

REMARK 4.6. Lemma 3.19 and assertion (v) of Theorem 3.8 give an answer
to Question 4.5 in the case that m = 1.
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