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Abstract. Let T be a torus. We present an exact sequence relating
the relative equivariant cohomologies of the skeletons of an equivariantly

formal T -space. This sequence, which goes back to Atiyah and Bredon,
generalizes the so-called Chang–Skjelbred lemma. As coefficients, we al-
low prime fields and subrings of the rationals, including the integers. We
extend to the same coefficients a generalization of this “Atiyah–Bredon se-
quence” for actions without fixed points which has recently been obtained
by Goertsches and Töben.

Résumé. Soit T un tore et soit X un T -espace dont la cohomolo-

gie équivariante est libre sur H
∗(BT ). Nous construisons une suite exacte

liant les cohomologies relatives equivariantes des squelettes de X, et dont
les coefficients sont à valeurs dans un corps premier ou dans un sous-anneau
des nombres rationnels, y compris l’anneau des entiers. Cette suite, qui re-
monte à Atiyah et Bredon, généralise le lemme de Chang–Skjelbred. Goert-
sches et Töben ont récemment démontré qu’une modification de cette suite
“d’Atiyah–Bredon” à coefficients réels est exacte dans le cas plus général
d’une action sans points fixes. Nous montrons que ceci reste vrai pour les
coefficients mentionnés ci-dessus.

1. Introduction. Let T = (S1)n be a torus of dimension n and X a “nice”
T -space. Suppose that X is cohomologically equivariantly formal1(or CEF ),
which means that its equivariant cohomology H∗

T (X) (with rational coefficients)
is free over the polynomial ring H∗(BT ). Then the so-called Chang–Skjelbred
lemma [CS, (2.3)] asserts that the sequence

(1.1) 0 −→ H∗

T (X) −→ H∗

T (X
T ) −→ H∗+1

T (X1, X
T )

is exact, where XT ⊂ X denotes the fixed point set and X1 the union of all
orbits of dimension at most 1. In other words, H∗

T (X) coincides, as subalgebra
of H∗

T (X
T ), with the image of H∗

T (X1) → H∗
T (X

T ). Usually XT and X1 are
much simpler than X, so that (1.1) gives an easy method to compute H∗

T (X).
This can be used for instance for a short proof of Jurkiewicz’s theorem about

1It seems that the terminology ‘equivariantly formal’ was coined by [GKM]. We add ‘coho-
mologically’ to avoid confusion with notions in rational homotopy theory.
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the cohomology of smooth projective toric varieties, because they are known to
be equivariantly formal, see Remark 2.3. There are many other applications of
the Chang–Skjelbred lemma in algebraic and symplectic geometry, often with
implications for combinatorics.

Roughly at the same time as Chang and Skjelbred, Atiyah proved a much
more general theorem in the context of equivariant K-theory [A, Chapter 7].
Bredon [Br] then observed that it applies equally to cohomology. In the con-
text of toric varieties an Atiyah-like theorem was proven by Barthel–Brasselet–
Fieseler–Kaup for cohomology and intersection homology [BBFK, Theorem 4.3].
Recently Goertsches and Töben [GT] made the very interesting observation that
the Cohen–Macaulay property, which Atiyah used in an essential way, gives gen-
eralizations also for fixed-point-free actions.

The principal aim of this note is to present a generalized cohomological version
of Atiyah’s theorem. Our proof in Section 2 will be a modification of his, adapted
to cohomology and with a special emphasis on coefficient rings R other than the
rationals, namely on subrings of Q and on prime fields. As a corollary, we get
an integral version of the Chang–Skjelbred lemma with certain restrictions on
the isotropy groups. We also extend the Goertsches–Töben result to the same
coefficient rings and to more general spaces than compact T -manifolds.

The present note is a revised version of our preprint [FP′]. It extends our
results from finite T -CW complexes to a much larger class of T -spaces and takes
into account the Goertsches–Töben result.

Acknowledgements. The authors thank Winfried Bruns, Jean-Claude Haus-
mann, Lex Renner and Sue Tolman for helpful discussions. We are also indebted
to the anonymous referee for suggesting improvements to the presentation of the
paper.

2. The Atiyah–Bredon sequence. We use Alexander–Spanier cohomol-
ogy, cf. [M, Chapter 8]. Coefficients are taken in a subring R of Q or in the finite
field R = Zp. Here the letter p denotes a prime, as it does in the rest of the
paper. All topological spaces will be assumed to be paracompact and Hausdorff.
Recall that on locally contractible spaces Alexander–Spanier cohomology and
singular cohomology coincide.

Let T = (S1)n be a torus and X a T -space. (Note that its Borel construc-
tionXT is again paracompact Hausdorff.) We assumeX to be finite-dimensional,
with only finitely many orbit types and such that H∗(XK) is finitely generated
over R for all closed subgroups K of T .2 For example, X may be a finite T -
CW complex, a compact topological T -manifold or a complex algebraic variety
with an algebraic action of (C×)n ⊃ T .

Denote by Xi, −1 ≤ i ≤ n, the equivariant i-skeleton of X, i.e., the union of

2These assumptions can be weakened, cf. [AP, Section 3.2]. For example, X can be finitistic
instead of finite-dimensional, and, for R = Q, must only have finitely many connected orbit
types.
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all orbits of dimension ≤ i. In particular, X−1 = ∅, X0 = XT and Xn = X.
Since X is Hausdorff with only finitely many orbit types, each Xi is closed in X.
The maximal p-torus Tp ⊂ T is the subgroup of all elements of order p (together
with 1 ∈ T ). It is isomorphic to Zn

p . The Tp-equivariant i-skeleton Xp,i of X is

the set of all Tp-orbits consisting of at most pi points. One clearly has Xi ⊂ Xp,i.
The inclusion of pairs (Xi, Xi−1) →֒ (X,Xi−1) gives rise to a long exact

sequence
(2.1)

· · · → H∗

T (X,Xi) → H∗

T (X,Xi−1) → H∗

T (Xi, Xi−1)
δ
→ H∗+1

T (X,Xi) → · · · ,

and likewise (Xi+1, Xi−1) →֒ (Xi+1, Xi) gives maps

(2.2) H∗

T (Xi, Xi−1) → H∗+1
T (Xi+1, Xi).

Theorem 2.1. Let X be a T -space such that H∗
T (X) is a free H∗(BT )-module.

Suppose in addition that for all i

Xp,i = Xi(2.3a)

if R = Zp, or, in case R ⊂ Q,

Xp,i−1 ⊂ Xi(2.3b)

for all p not invertible in R. Then the following “Atiyah–Bredon sequence” is
exact:

(2.4) 0 −→ H∗

T (X) −→ H∗

T (X0) −→ H∗+1
T (X1, X0) −→ · · ·

· · · −→ H∗+n−1
T (Xn−1, Xn−2) −→ H∗+n

T (Xn, Xn−1) −→ 0.

More generally, if condition (2.3a) or (2.3b) holds for all i ≤ k, then one still
has exactness for

(2.5) 0 −→ H∗

T (X) −→ H∗

T (X0) −→ H∗+1
T (X1, X0) −→ · · ·

· · · −→ H∗+k−1
T (Xk−1, Xk−2) −→ H∗+k

T (Xk, Xk−1).

The content of the Chang–Skjelbred lemma is just exactness of the Atiyah–
Bredon sequence at the first terms. Rephrasing Theorem 2.1 for k ∈ {0, 1} and
integer coefficients, we get:

Corollary 2.2. Assume R = Z and let X be a T -space such that H∗
T (X) is

free over H∗(BT ). Then

0 −→ H∗

T (X) −→ H∗

T (X0)
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is exact. If in addition the isotropy group of each x 6∈ X1 is contained in a
proper subtorus of T ( i.e., if condition (2.3b) holds for i ≤ 1), then the following
sequence is exact:

0 −→ H∗

T (X) −→ H∗

T (X0) −→ H∗+1
T (X1, X0).

The injectivity of the map H∗
T (X) → H∗

T (X0) is an immediate consequence
of the localization theorem in equivariant cohomology, see Lemma 4.4 below.

The above “proper subtorus condition” is violated in the counterexample given
by Tolman–Weitsman [TW, Section 4] because there all orbits of dimension 2
have isotropy group Z2 × Z2 ⊂ S1 × S1. The full condition (2.3b) can be stated
analogously: For R = Z the isotropy group Tx of any x ∈ X must be contained
in a subtorus of dimension ≤ dimTx + 1.

Remark 2.3. In some cases general criteria guarantee the freeness of H∗
T (X)

over H∗(BT ), for instance if H∗(X) is free over R and concentrated in even
degrees (Leray–Hirsch). Assume that H∗(X) is free over R ⊂ Q. Then H∗

T (X)
is free over H∗(BT ) if X is a compact Kähler manifold with XT 6= ∅ (for
example, a smooth projective (C×)n-variety) [Bl, Theorem II.1.2] or if X is a
compact Hamiltonian T -manifold [F]. If all isotropy groups of X are connected,
then the exactness of the Atiyah–Bredon sequence with integer coefficients can
be characterized by a homological condition on H∗

T (X), see [FP].

3. Isotropy groups. Before proving Theorem 2.1, we want to reformulate
the conditions (2.3a) and (2.3b) on the equivariant skeletons in algebraic terms.
In the sequel, we will refer to (2.3a) and (2.3b) together as condition (2.3). Notice
that this condition is always satisfied for R = Q.

For any closed subgroup T ′ ⊂ T there is an isomorphism T ∼= (S1)n and a
divisor chain mq |mq−1 | · · · |m1 such that T ′ corresponds to the subgroup

(3.1) Zm1
× · · · × Zmq

× (S1)r ⊂ (S1)n.

(To see this, consider the inverse image of T ′ under the exponential map exp: t →
T and compare it with the lattice exp−1(1).)

Recall that the dimension of a module M over a ring S is the Krull dimension
of S/AnnM , that is, the length of a maximal chain p0 ( p1 ( · · · of prime ideals
in S, all containing the annihilator AnnM of M . We denote the dimension of R
over itself by d. Hence, d = 0 if R is a field, and d = 1 if R ( Q. Since R is a PID,
the dimension of a polynomial ring R[t1, . . . , ts] is d+ s [S, Proposition III.13].

Lemma 3.1. Let T ′ ⊂ T be a closed subgroup and let s be the number of mj’s
in the decomposition (3.1) which are not invertible in R. Then

dimH∗(BT ) H
∗(BT ′) =

{

r + s if R is a field or s > 0,

r + 1 if R ( Q and s = 0.
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Proof. TheH∗(BT )-action onH∗(BT ′) comes from the algebra map induced
by the inclusion T ′ →֒ T . Hence, the dimension of the H∗(BT )-module H∗(BT ′)
is equal to the Krull dimension of the (evenly graded) image A of H∗(BT )
in H∗(BT ′).

We choose isomorphisms H2∗(BS1) ∼= R[t] and H2∗(BZm) ∼= R[t]/mt such
that the map H2∗(BS1) → H2∗(BZm) corresponds to the canonical quotient
map R[t] → R[t]/mt. By the Künneth theorem for cohomology, we find

A ∼= H2∗(BZm1
)⊗ · · · ⊗H2∗(BZq)⊗H2∗(BS1)⊗r

∼= R[t1, . . . , tq, t
′

1, . . . , t
′

r]/(m1t1, . . . ,mqtq)

= R[t1, . . . , ts, t
′

1, . . . , t
′

r]/(m1t1, . . . ,msts)

since ms+1, . . . ,mq are invertible in R.
R, a field or s = 0: then A ∼= R[t1, . . . , ts, t

′
1, . . . , t

′
r], so the assertion is clear.

R ( Q and s > 0: An ascending chain of prime ideals in A of length k
is the same as an ascending chain p0 ⊂ · · · ⊂ pk of prime ideals in B =
R[t1, . . . , ts, t

′
1, . . . , t

′
r] with (m1t1, . . . ,msts) ⊂ p0. Since one can clearly find

such a chain of length r+ s, we have to show that there are no longer chains. If
p0 contains some prime factor p of ms, then B/p0 is a quotient of

Zp[t1, . . . , ts, t
′

1, . . . , t
′

r],

which is of dimension r + s. Otherwise, ts ∈ p0 and B/p0 is a quotient of
R[t1, . . . , ts−1, t

′
1, . . . , t

′
r], which by induction has again dimension r + s. In any

case, we find that k ≤ r + s. �

Proposition 3.2. The conditions (2.3) for all i ≤ k are equivalent to the
conditions

(3.2) ∀x ∈ X dimH∗(BT ) H
∗(BTx) ≥ d+ n− i =⇒ x ∈ Xi

for all i ≤ k.

Proof. R = Q: Since the dimension of H∗(BTx) is just the rank of Tx,
condition (3.2) holds for all spaces, as does (2.3).

R = Zp: By Lemma 3.1, condition (3.2) means that the rank of the maximal
p-torus contained in Tx equals the dimension of Tx for x ∈ Xk, and differs by at
most i−k−1 for x ∈ Xi \Xi−1, i > k. This is equivalent to Xp,i = Xi for i ≤ k.

R ( Q: Here condition (3.2) translates into the following: for each non-
invertible prime p the rank of the maximal p-torus in Tx differs by at most 1
from the dimension of Tx for x ∈ Xk, and by at most i − k for x ∈ Xi \Xi−1,
i > k. This is the same as saying Xp,i−1 ⊂ Xi for all i ≤ k. �

Note that conditions (3.2) are always true in K-theory (see [A, (7.1)]), es-
sentially because the representation ring of a finite group is a finitely generated
Z-module.
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4. Proof of Theorem 2.1. Before starting in earnest, we remark that our
assumptions on X imply that all R-modules H∗(Xj , Xi), j ≥ i, are finitely
generated, hence so are the H∗(BT )-modules H∗

T (Xj , Xi). (Use the usual long
exact sequences for the first claim. For equivariant cohomology, the proof given
in [AP, (3.10.1)] for R = Q still applies.)

The sequences (2.4) and (2.5) are exact if and only if for all i ≥ 0 (respectively
0 ≤ i ≤ k) the sequence (2.1) splits into short exact sequences

(4.1) 0 −→ H∗

T (X,Xi−1) −→ H∗

T (Xi, Xi−1) −→ H∗+1
T (X,Xi) −→ 0,

i.e., if and only if the inclusion of pairs (X,Xi−1) →֒ (X,Xi) induces the zero
map in cohomology. (See [FP, Lemma 4.1].)

Let M be a graded H∗(BT )-module. Then any prime ideal associated with M
is homogeneous, i.e., generated by its homogeneous elements [BH, Lemma 1.5.6],
hence contained in some maximal homogeneous ideal m. This implies M = 0
if and only if Mm = 0 for all maximal homogeneous ideals m ⊂ H∗(BT ). It
suffices therefore to prove exactness after localizing at such an ideal m. Note
that it always contains H>0(BT ). From now on all localized modules will be
over the regular local ring A = H∗(BT )m, whose maximal ideal we denote by mA.

By induction on i ≥ 0 (resp. 0 ≤ i ≤ k), we show:

Claim 4.1. The sequence (4.1) is exact, and H∗
T (X,Xi)m is zero or a Cohen–

Macaulay module of dimension d+ n− i− 1.

Recall that the depth of a finitely generated A-module M is the maximal
length of an M -regular sequence in the maximal ideal mA. An M -regular se-
quence is a sequence a1, . . . , al ∈ mA such that (a1, . . . , al)M 6= M and such that
aj is not a zero divisor on M/(a1, . . . , aj−1)M for all j ≤ l. One always has

(4.2) depthM ≤ dimM ;

if M 6= 0 and

(4.3) depthM = dimM,

then M is called Cohen–Macaulay. (We use [S] and [BH] as references for com-
mutative algebra. The reader might also find the summary of results in [AP,
Appendix A] helpful. They were compiled with applications in equivariant co-
homology in mind.)

We start the proof with several lemmas. The first two are standard.

Lemma 4.2. Let 0 → U → M → N → 0 be an exact sequence of A-modules.
Then

depthN ≥ min{depthU − 1, depthM}.
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Proof. Since
depthM = inf{i : Exti(K,M) 6= 0},

where K denotes the residue field of A, the assertion follows from the long exact
sequence

· · · −→ Exti(K,U) −→ Exti(K,M) −→ Exti(K,N) −→ Exti+1(K,U) −→ · · · .

�

Lemma 4.3. Let M be a Cohen–Macaulay A-module. If U ⊂ M is a non-zero
submodule, then dimU = dimM .

Proof. Choose a prime ideal p associated to U , hence also to M . Since M is
Cohen–Macaulay, we have dimA/p = dimM by [S, Proposition IV.13]. On the
other hand, dimA/p ≤ dimU ≤ dimM . �

Lemma 4.4. For all i ≤ k one has dimH∗
T (X,Xi) ≤ d+ n− i− 1.

Proof. This follows from the localization theorem in equivariant cohomology:
For a prime ideal p ⊂ H∗(BT ), define Xp = {x ∈ X : p ⊃ AnnH∗(BTx)}. The
localization theorem asserts that the inclusion Xp →֒ X induces an isomorphism

H∗

T (X)p = H∗

T (X
p)p,

see for example [AP, Section 3.2]. An analogous formula holds for relative coho-
mology.

Now assume that dimH∗
T (X,Xi) ≥ d + n − i. This means that there is a

prime ideal p ⊃ AnnH∗
T (X,Xi) such that dimH∗(BT )/p ≥ d + n − i. Hence

dimH∗(BTx) ≥ d + n − i for any x ∈ Xp. By Proposition 3.2, this implies
x ∈ Xi, i.e., X

p ⊂ Xi. The localization theorem now gives

H∗

T (X,Xi)p = H∗

T (X
p, Xp

i )p = H∗

T (X
p, Xp)p = 0.

But this is impossible, because for any prime ideal p one has p ⊃ AnnH∗
T (X,Xi)

if and only if H∗
T (X,Xi)p 6= 0 [S, Proposition I.3]. (Here we are using that

H∗
T (X,Xi) is finitely generated over H∗(BT ).) Hence dimH∗

T (X,Xi) ≤ d+n−
i− 1. �

Lemma 4.5. For all i ≥ 0 one has depthH∗
T (Xi, Xi−1)m ≥ n− i.

Proof. Each x ∈ Xi \Xi−1 is fixed by exactly one (n− i)-dimensional torus
Tα ⊂ T . Because X has only finitely many orbit types, we can write Xi \Xi−1

as the disjoint union of finitely many subsets Yα = (Xi \Xi−1)
Tα . Since Ȳα ⊂

Yα ∪Xi−1, a Mayer–Vietoris argument gives

H∗

T (Xi, Xi−1) =
⊕

α
H∗

T (Ȳα, Ȳα ∩Xi−1).
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(Recall that with respect to Alexander–Spanier cohomology, the Mayer–Vietoris
sequence is exact for all pairs of closed subspaces, cf. [M, Section 8.6].)

We have

M := H∗

T (Ȳα, Ȳα ∩Xi−1) = H∗

T/Tα
(Ȳα, Ȳα ∩Xi−1)⊗R H∗(BTα)

because Ȳα is fixed by Tα. A sequence of generators x1, . . . , xn−i ∈ H2(BTα) ⊂ m

clearly is Mm-regular. Hence

depthMm ≥ n− i.

The description of depth via Ext (cf. the proof of Lemma 4.2) shows that the
depth of a direct sum is the minimum of the depths of the summands. This gives
the result. �

We now prove Claim 4.1 by induction on i, assuming that H∗
T (X,Xi−1)m is

zero or a Cohen–Macaulay module of dimension d + n − i. For i = 0 this is
true because we assume H∗

T (X,X−1) = H∗
T (X) to be free over the regular ring

H∗(BT ).
In the case H∗

T (X,Xi−1)m = 0 the sequence (2.1) splits into short exact
sequences for trivial reasons. Suppose therefore that H∗

T (X,Xi−1)m is non-zero
and Cohen–Macaulay of dimension d+ n− i. Since

(4.4) dimH∗

T (X,Xi)m ≤ dimH∗

T (X,Xi) ≤ d+ n− i− 1

by Lemma 4.4 and dimH∗
T (X,Xi−1)m = d + n − i, the image of H∗

T (X,Xi)m
in H∗

T (X,Xi−1)m has lower dimension than the target module, hence is zero by
Lemma 4.3. In other words, (4.1) is exact in this case as well.

Lemma 4.2 now gives

(4.5) depthH∗

T (X,Xi)m ≥ d+ n− i− 1

since depthH∗
T (Xi, Xi−1)m ≥ n − i by Lemma 4.5 and depthH∗

T (X,Xi−1)m =
d+ n− i (or infinity if H∗

T (X,Xi−1)m = 0).
Comparing (4.4) and (4.5) with the inequality (4.2) finishes the proof.

5. Actions without fixed points. The Atiyah–Bredon sequence (2.4) can
never be exact if T acts without fixed points (unless X = ∅). Yet there are
interesting fixed-point-free actions. In the context of compact differentiable T -
manifolds and real coefficients, Goertsches and Töben [GT] observed that one
can modify (2.4) to accommodate for this case. We briefly comment on such a
generalization in our setting.

Proposition 5.1. Let k be the minimal dimension of the T -orbits in X. If X
satisfies condition (2.3), then dimH∗

T (X) = d+ n− k.
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Proof. Since Xk−1 = ∅, we have dimH∗
T (X) ≤ d+ n− k by Lemma 4.4.

For the reverse inequality, pick an x ∈ Xk, say with isotropy group T ′. The
map H∗(BT ) → H∗(BT ′) factors through the map H∗

T (X) → H∗
T (Tx) =

H∗(BT ′) induced by the inclusion Tx →֒ X. This implies AnnH∗
T (X) ⊂

AnnH∗(BT ′), hence dimH∗
T (X) ≥ dimH∗(BT ′). But, under condition (2.3),

Lemma 3.1 gives dimH∗(BT ′) = d+ n− k. �

A finitely generated graded moduleM overH∗(BT ) is called Cohen–Macaulay
if Mm is Cohen–Macaulay over H∗(BT )m for all maximal ideals m ∈ SuppM . If
M is free over H∗(BT ), then it is Cohen–Macaulay of maximal dimension d+n
(cf. the proof of Claim 4.1). We remark in passing that the converse holds as well,
even if R is not a field: The Auslander–Buchsbaum formula [BH, Theorem 1.3.3]
together with [S, Corollary IV.C.2] implies that M is projective; freeness then
follows from the (comparatively easy) analogue of the Quillen–Suslin theorem
for finitely generated graded modules over polynomial rings with coefficients in
a PID [L, Corollary 4.7].

Theorem 5.2. Let k be the minimal dimension of the T -orbits in X. If H∗
T (X)

is Cohen–Macaulay over H∗(BT ) and X satisfies condition (2.3), then the fol-
lowing sequence is exact:

0 −→ H∗

T (X) −→ H∗

T (Xk) −→ H∗+1
T (Xk+1, Xk) −→ · · ·

· · · −→ H∗+n−1
T (Xn−1, Xn−2) −→ H∗+n

T (Xn, Xn−1) −→ 0.

The only change to the proof of Theorem 2.1 is that the induction now starts
at i = k, which is the dimension of H∗

T (X) by Proposition 5.1.
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[S] J.-P. Serre, Algèbre locale. Multiplicités. Third edition. Lecture Notes in

Math. 11, Springer, Berlin, 1975.
[TW] S. Tolman and J. Weitsman, On the cohomology rings of Hamiltonian T -spaces.

In: Northern California Symplectic Geometry Seminar, Amer. Math. Soc.
Transl. Ser. 196, Amer. Math. Soc., Providence, RI, 1999, 251–258.

Department of Mathematics, University of Western Ontario, London, ON N6A 5B7
e-mail: mfranz@uwo.ca

FB Mathematik und Statistik, Universität Konstanz, 78457 Konstanz, Germany
e-mail: volker.puppe@uni-konstanz.de


