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A GEOMETRIZATION OF THE HAPPEL FUNCTOR

FAN XU AND XUEQING CHEN

Presented by Vlastimil Dlab, FRSC

ABSTRACT. The Happel functor is a full and faithful exact functor from
the derived category D®(A) of bounded complexes over module category of a
finite-dimensional algebra A to the stable category mod A of the repetitive
algebra A of A. If A has finite global dimension, this functor is even
an equivalence of triangulated categories. Xiao, Xu, and Zhang defined
topological spaces associated with DY(A). In this paper, we attach some
topological spaces for LMA and construct maps between two kinds of
topological spaces as a geometric characterization of the Happel functor.

RiESUME.  Le foncteur Happel est un foncteur plein, fidele, et exact
de la categorie derivée D®(A) des complexes bornés sur la categorie des
modules d’une algebre A de dimension finie dans la categorie stable mod A
de Dalgébre répétitive A de A. Si A est de dimension finie (en dimension
globale), ce foncteur sera méme une équivalence des categories triangulées.
Les espaces topologiques associés & D?(A) étaient définés par Xiao, Xu et
Zhang. Dans cette article, nous associons quelques espaces topologiques a la
categorie MA, et nous construisons des applications entre deux sortes des
espaces topologiques comme une caractérisation géometrique du foncteur
Happel.

1. Introduction. Let A be a basic finite-dimensional algebra over the
complex field C and mod A the category of all finite-dimensional left A-modules.
For any dimension vector d, we can associate a module variety Eq4(A) to the sub-
set of mod A consisting of modules with dimension vector d (see [4] or Section 2.2
for details). In the same spirit, the geometry over mod A can be generalized to
C*(A), the category of bounded differential complexes of A-modules (see [3]), i.e.,
we can associate an algebraic variety C’(A,d) to the subset of C’(A) consisting of
complexes with dimension vector sequence d (see Section 2.2). The geometriza-
tion of C’(A) naturally induces a geometrization of P°(A), the subcategory of
C(A) of bounded projective complexes. In view of these constructions, we can
associate some topological spaces to the derived category D?(A) of bounded com-
plexes over mod A and the homotopy category K° (P(A)) of bounded projective
complexes (see [7] or Section 2.2). Then when A has finite global dimension,
this deduces a geometrization of the equivalence D?(A) = K*(P(A)). Note that
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the constructible functions over these topological spaces can be applied to give
realization of Kac-Moody algebras (see [7]).

On the other hand, one can construct the repetitive algebra A for A. In 2],
D. Happel discovered the following important connection between the derived
category of A and the stable module category of A.

THEOREM 1.1 (The Happel Functor). There exists an ezact functor
F: D°(A) = mod A
of triangulated categories which is full and faithful such that § |mea a= id. In
particular, if gl.dimA < oo, then § is also dense.

The aim of this paper is to associate topological spaces to D?(A) and mod A,
respectively, and to convert the above categorical equivalence into locally con-
structible maps (see Definition 3.2) which can be viewed as a geometrization of
the Happel functor §. As a byproduct, it also gives an explicit realization of the
Happel functor §.

2.  Some preliminary results.

2.1.  Repetitive algebra. Let A be a basic finite-dimensional C-algebra. Its
repetitive algebra, denoted by 4, is an infinite-dimensional Frobenius algebra.
The underlying vector space of A is given by

A= (g}zA) ® (gazDA),

where D = Homg(—,C) is the standard duality. We denote the elements of
A by (a;, ¢i)i, where a; € A, p; € DA, and almost all a;, p; are zero. The
multiplication is defined by

(@i, 0i)i - (bi,¥i)i = (@ibi, aip1i + ©iby);.

Denote by mod A the category of all finitely generated A-modules. The A-
module can be written in the following way:

(M, fi)i =~ M; 'fj’MiJrl ~e
where M; € mod A are all but finitely many zero, and
fi: Mi — HOIIIA(DA, Mi+1)

are A-linear maps such that Hom (DA, f;411) - fi = 0 for all i € Z. Let {P! |
1 <1 < n} be a complete set of indecomposable projective A-modules up to
isomorphism, the indecomposable projective and injective A-module has the form

J
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where P! is an indecomposable projective A-module and is put as the j-th term
of P, for any j € Z. We also often use the adjoint form

I, =+ ~0n~Homa(DAI'") ~ K' ~ 0~ -
where I' = Hom4 (A, P') is an indecomposable injective A-module and is put as
the j + 1-th term of [;; for any j € Z. Note that P, = I, for any 1 <1 < n and
jE€Z.

For two A-modules X and Y, let P(X,Y) be the space of morphisms from
X to Y which factor through a projective A-module. Then the stable category
mod A, whose objects are the same as those of mod A and whose morphisms
are given by the quotient spaces Hom(X,Y) = Hom 4(X,Y)/P(X,Y) carries a
natural structure of triangulated category (see [2]).

We have a canonical embedding of mod A into mod A as the composition of the
embedding from mod A into mod A and the canonical functor mod A — mod A
which sends M € mod A onto (M;, f;), € mod A where My = M and M; = 0 for
i # 0. For any M € mod A, its injective hull and projective cover in mod A are
described as follows:

-+~ 0~ Homa (DA, I(M)) ~I(M) ~0~---

and
-~0~PM)~DARQPM)~0~---

where I(M) and P(M) are the injective hull and the projective cover of M in
mod A, respectively.

2.2.  Topological spaces for derived categories. Recall that A ~ CQ/J, where @
is a quiver, CQ is the path algebra of ) and J is an admissible ideal generated
by a set R of relations in Q). Let I and ()1 be the sets of vertices and arrows of
the quiver @, respectively, and let s,t: @1 — I be maps such that any arrow «
starts at s(a) and terminates at ¢(a). For any dimension vector d = ). a;i € NI,
we consider the affine space over C:

Eq(Q) = @ Homg(C, Cr).
aEQy

Any element ¥ = (z4)acg, in E4(Q) defines a representation M (z) of @ with
dim M(z) = d in a natural way. A relation in @ is a linear combination
> i, Aipi, where A; € C and p; are paths of length at least two with s(p;) = s(p;)
and t(p;) = t(p;) for all 1 < i,j < r. For any = (za)acq, € Eq(Q) and any
path p = ocyag -+ -y, in Q, set £, = T, T, - - Ta,,. Then z satisfies a relation
Sy Aipi if D00 Nz, = 0. If R is a set of relations in @, then let E4(Q, R)
be the closed subvariety of Eq4(Q) which consists of all elements satisfying all
relations in R. Any element & = (Za)acq, in E4(Q, R) defines in a natural way
a module M (z) of A ~ CQ/J with dim M (z) = d (see [4]). For simplicity, define
Eq(A) = Ea(Q, R).
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For a dimension vector d, set the I-graded C-space V¢ = P, C*. For a
sequence of dimension vectors d4 = (...,dY,...) with only finitely many non-
zero entries, define C*(A,d ) to be the subset of

) d’L di+1
H Egs, (A) x H Homg (V44 Ve4 )
€L €L

which consists of elements (z;, 0;);, where z; € Egi (A), M (x;) is the correspond-
ing A-module on the space V% and 0; € Homgc(V%, VQZ\H) is an A-module
homomorphism from M (z;) to M (x;41) with the property 0;4+10; = 0. In fact,
(M(mz), ai)i, or simply denoted by (x;,9;);, is a complex of A-modules and d 4
is called its dimension vector sequence (see [3], [7]).

Now we associate topological spaces to DY(A) as discussed in [7]. Let
Ko(D"(A)) be the Grothendieck group of the derived category D"(A), and
dim: D*(A) — Ko (D"(A)) the canonical surjection. Indeed, if X® = (X;,0;); €
DP(A), we obtain dim X® = 3", (—1)" dim X;. It induces a canonical surjection
from the abelian group of dimension vector sequences to Ko (D°(A)), we still de-
note it by dim. Note that the set C*(A,d4) of all complexes of fixed dimension
vector sequence d 4 in C®(A) is an affine variety. Define

C'(A,da) = U C’(A,dy)

d,edim=1(da)

for any d4 € Ky (Db(A)). In general, we have two common ways to define topol-
ogy over C*(A,d4) when we want that the topology over C’(A,d4) is naturally
induced by the topology over C’(A,d ). One is the weak topology, the other is
the strong topology. Here we prefer to use the strong topology, i.e., we choose
the following set as topology base of closed subsets:

B:{ U  Ca,

d,edim—1(da)

Cq, is the closed set of Cb(A,QA)}.

Moreover, we can define the quotient space Q°(A,d4) = C’(A,d4)/ ~, where
X*® ~ Y*if and only if the complexes X*® and Y® are quasi-isomorphic, i.e., they
are isomorphic in D?(A). The topology of Q"(A,d4) is an quotient topology,
i.e., let m: CP(A,da) — QP(A,d,) be the canonical surjection, then U is an open
(or closed) set of Q°(A,d4) if and only if 7=(U) is an open (or closed) set of
C’(A,da).

2.8.  Topological spaces involving a repetitive algebra. The same constructions
discussed in Section 2.2 for algebra A can be applied to repetitive algebra A.
First, in a similar manner, we can define the module variety over A. For any
M € mod A, let M = (M, fi); = ~M,; L M1 ~ -+, we call the sequence of
dimension vectors of A-modules (...,dim M;, ...) the dimension vector sequence
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of M, simply denoted by d; = (...,d;’,...) = di(M) = (...,dimM;,,...).
Then Eg (A) is defined as the closed subset of

i i+1
16‘[ZEdL( ) x Home (V%4 Home (DA, V44 )

which consists of elements (i, fi);, where z; € Eg, (A), M(z;) is the corre-
sponding A-module on the space Vs and fi € HomC(V 4, Homg (DA, Vd7+1))
is an A-module homomorphism from M (z;) to Homa (DA, M (z;41)) with the
property Homy (DA, fiy1) - f; =0 for all i € Z. In fact, (M(x;), f;)i, or simply
denoted by (x;, fi)q, is an A-module. Note that the above product only contains
finitely many non-zero terms so that the definition is well defined.

Next, we can construct topologic_al space for Db(fl), the bounded derived
category of mod A. Letd; d;=(.. dJ ..) be the sequence of dimension vector

sequences of A-modules with only ﬁmtely many non-zero entries, which will be
called the dimension vector array of A-modules. Define C*(A,d ; 4) to be the

subset of
dJ+1

[1E, (A) x ] Home(VE)' v

jez 4 i,jEL
which consists of elements (z;,0;;)(; ;) where z; € E; (A), M(x;) is the corre-
—A

sponding A-module,
J+1
8;; € Home (VD' v’y

is an A-module homomorphism from M (z;); to M (zj41); and 0; = (0ij)iez is an
A-module homomorphism from M (z;) to M (2 1) with the property d;19; = 0.
Note that (M(:L’j),aij)(i7j), or simply denoted by (z;,0:;),j), is a complex of
A-modules and d 4 is its dimension vector array.

By using a similar way, we can also define Cb(/i,dA) and Qb(fl,dA) for any
d; € Ko(D(4)).

We now fix a complete set of indecomposable projective-injective A-modules
(up to isomorphism) {F;, | 1 <1 < n,j € Z} (= {I;;}). Let HP(A) be the
full subcategory of C’(A) which consists of almost projective-injective complexes
(special case of ‘almost projective complexes’ defined by Saorin and Huisgen-
Zimmermann in [3]), i.e., the complexes H®* = (H* 9}) such that: for k # 0,
HF =~ @e P, where el are nonnegative integers, all but finitely many being
zero; for k = 0, HY is an A-module. For k # 0, denote by L(H*) the vector (el ).
The sequence L(H®) = (..., L(H™"),d;(H°),L(H"),...) is called the almost
projective-injective dimension sequence of H*. For a fixed almost projective-
injective dimension sequence L = L(H?®), the corresponding dimension vector
array is d (L) = (d4(H")), we define H’(A,L) to be a (locally closed) subset
of C*(A,d 4(L)) which consists of elements (z;,9;;); ;) where z; € Ediﬁ (A) for

any j € Z, and M(x;) is the corresponding A-module isomorphic to HY for
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any j # 0. Recall that the canonical surjection dim: D?(A) — K (Db(/l)) can
induce a canonical surjection from the abelian group of dimension vector arrays
of A-modules to K (Db(A)), we still denote it by dim. We may define

HO(A,L) = U HO(A,L)
d;(L)edim~*(L)

for any L € KO(DZ’(A)).
Then Hb(/l, L) has the natural topological structure with the topological base
of closed subsets given by

B= { U BL ‘ By is a closed set of Hb(fl,L)}.
d 4 (L)edim~!(L)

We also have the quotient space QH?(A, L) = H*(A,L)/ ~, where X* ~ Y* in
'Hb(fl, L) if and only if X*® and Y'® are quasi-isomorphic, i.e., they are isomorphic
in Db(A). The topology of Q?—lb(fL L) is the quotient topology derived from the
topology of ’Hb(fl, L).

For X,Y € mod A, we say X ~ Y if there exists u: X — Y such that the
mapping cone Cone(u) of the map u is an injective A-module or Cone(u) = 0.
This condition is equivalent to that there exists an isomorphism of A-modules
X @I ~Y @I for some injective A-modules I’ and I”.

Let Ko(mod 121) be the Grothendieck group of triangulated category mod A
and Dim: mod A — K, (mod /1) be the canonical surjective. It induces a canon-
ical surjective map from the abelian group of dimension vector sequences d ; to
Ky(mod fl) which is still denoted by Dim. In the same way as used in Section 2.2,
we can define:

E(A,d}) = U Eq (A) and QE(A,d)=E(Ad})/ ~

dz€Dim~1(d’})

for any d;i € Ko(mod fl), where “~” is the equivalence relation defined on
mod A.

3. Main theorem. In this section, we will prove the main result of The-
orem 3.3. Throughout, we assume that A has finite global dimension.

DEFINITION 3.1. Let X and ) be algebraic varieties over C. A map f.: X —
Y is called constructible if there exists a finite stratification of locally closed
subsets X = |_]§:1 A} such that the restriction of f. to each X; is a morphism of
varieties.

DEFINITION 3.2.  Let X = | |, & and YV = |_|j€T Y; be disjoint unions
of algebraic varieties X; and ); for countable sets S and T, respectively. Let
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X and ) be the quotient spaces with respect to some equivalence relations,
respectively. A map f: X — ) is called locally constructible with respect to the
above disjoint unions if f |y, is a constructible map and the induced quotient
map qf is a bijection. If g: ) — X is a locally constructible map and qg is the
inverse of qf, then we say f and g constitute a pair of locally constructible maps
with respect to disjoint unions.

Note that the composition of two locally constructible maps is still locally
constructible.

THEOREM 3.3.  For any da € Ko(D(A)), there erist d’; € Ko(mod A) and
a pair of locally constructible maps

Hy:C"(A,da) > E(A,d) and Hy:E(A,d}) — C"(A,dy)
with respect to disjoint unions:

Cl(A,dy) = U C’(A,d,) and E(A,d)) = U Eq . (A).

A
d,edim~1(da) QAEDimfl(d;i)

The proof will be made along the following commutative diagram:

Ad’

o

(3.1)  C(A,da) . CP(A,dy)

q0 R af
Q(A,da) — Q¥(A,dy) — OH®

where 0 is derived from the canonical embedding from mod A to mod A, f and
p will be discussed later.

In the following, all statements involving disjoint unions and equivalence re-
lations have been described in the previous section. For simplicity, we will not
emphasis the expression “with respect to disjoint unions”. In general, we cannot
guarantee the maps in diagram (3.1) are morphisms of varieties. Instead, we
consider the constructible maps [6].

The following result is an immediate consequence of the knowledge of linear
algebra.

LEMMA 3.4. Let A be a basic finite-dimensional C-algebra. Define ¢: NI —
N which maps d =3, aii to 3>, a;. Let Eq(A) = Ugey-1(q) Ea(A) be the module
variety of all A-modules M with dim¢ M = d. For any d1,ds € N, let V(dy,ds)
be the subset of Eq, (A) x Eg, (A) x Homg (C4, C%) consisting of triple (My, M, f)
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such that My € Eq, (A), My € Eg,(A) and f € Homa(My, Ms). Then there exist
constructible maps:

fev: V(dy,dy) — | | Ea(A) x Home(C4,CH)
d<d;

and
Coter: V(dy,dy) — | | Ea(A) x Homg(C*,C)
d<ds

such that RKev(My, Ms, f) = (Ker f,e) and Coter(M;, Mo, f) = (Coker f, ),
where e: Ker f — My and m: My — Coker f are the natural embedding and
projection, respectively.

Let X* € C’(A) be the complex as follows:

0 xn2my xt Ey xSyt Ot em g,

As discussed in [1], we can construct an almost projective-injective complex
quasi-isomorphic to X*. We start with the following commutative diagram:

0T p—T gy ——202%% . P — P, —0

where I_,, is the injective hull of X", Y ~"*! is the corresponding pushout,
P, is the projective cover of X™ and Y™ ! is the corresponding pullback. The
below complex is quasi-isomorphic to the above complex X*® (see Lemma 2.6
in [7]). By iterating this process, we can obtain the complex with the following
form:

0Ty T gy —r 2% . P P, —0

where the terms on the left-hand side of the 0-th term are injective modules and
the terms on the right-hand side of the O-th term are projective modules. This
complex is quasi-isomorphic to X®. We set F(X*®) to be this complex. Using a
routine method, we can easily verify that F is a functor from C?(A) to C’(A).

PROPOSITION 3.5.  For a fized dimension vector array d; of A—modules,
the functor F: C*(A) — CY(A) induces a constructible map

f:Cb(A,dy) — HYA L)

for some almost projective-injective dimension sequence L.

PROOF.  For any M* € C"(A,d ;) with d 4 = (&;) ez and &; = ((&',)")icz,
as a complex, assume that M*® has the following form:

= M — M
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Each M7 as an A-module has the form as follows:

~~M5~Mf+1~--~

with dim M7 = (dii)l. There are standard surjective A-morphisms: A% —» Mf
where d/ = dime M. For a given A-module M/, denote by M? (i) the A-module
whose i-th term is M7 and all other terms are 0. Therefore, the above standard
surjective A-morphism induces a standard surjective A-morphism: Pij — Mf (1)
where Pij = ...~ 0~ A% ~ DA ®A AL ~ 0~ - isa projective-injective

A-module. Let Pji = EBPij, then there is a surjective A-morphism from P}l to

M7 which is called standard projective cover. Dually, we can write down the
standard injective hull I,]Zx for M7. Then we obtain a complex N* € C*(A,d’;)

for some dimension vector array Q;i with the following commutative diagram

N* R N P}\
M® "'HMj_l MJ

where N7~1 is the pull-back. Note that the process of taking pull-back only in-
volves the operation of taking kernel of some morphism, therefore by Lemma 3.4,
the above construction induces a constructible map from C?(A, d 1) to CP(A, d;).
By iterating this construction as the way of constructing F(X*®), we can obtain a
constructible map f: Cb(fl, d;) — ’Hb(fl,L) for some almost projective-injective
dimension sequence L. O

PROPOSITION 3.6. For any d; € Ko(Db(fl)), under the quotient topol-
ogy, the constructible map f discussed in Proposition 3.5 induces a locally con-
structible map R R .

f:CP(A,d;) —» H(AL)
where L = d ;.

PROOF.  Given any X*® € C’(A). Since F(X*) is quasi-isomorphic to X*,
they correspond to the same element in Ko (D°(A)). Therefore

L = dim(d 4 (L(F(X*)))) = dim(d 4 (X*)) = d 4.

The map f can be derived from f naturally. There exists a canonical embedding
é: HY(A,L) — Cb(/l,dA). Denote by qf and gé the quotient maps of f and é
(see Diagram 3.1), respectively. It is easy to verify that g f and gé are inverse to
each other. The statement of the proposition will follow immediately. O



A GEOMETRIZATION OF THE HAPPEL FUNCTOR 61

For any H® € HY(A,L), let H be its 0-th term and d; = Dim (d 4(H?)).
Then we can define a map p: H*(A,L) — E(fl,d;i) with p(H®) = H°. For
X*,Y* e Hb(fl, L), if X* and Y'® are isomorphic in Db(zzl)7 then p(X*®) ~ p(Y'*)
in mod A (see Proposition 7 in [1]). Note that X* is isomorphic to p(X*) in
DP(A)/K"(P(A)) which is equivalent as a triangulated category to mod (A)
(see [5]). Hence, the quotient map qp’ of the natural embedding p’: E(A, d;) —

Hb(fl, L) is the inverse of the quotient map qp of p. It is clear that p and p’ is a
pair of locally constructible maps.
For any dimension vector sequence d; € Diim_l(d;i), we can construct the
map
h:Eq (A) — C"(A,e,)

by induction for some dimension vector sequence e, of A-modules.
Assume that the global dimension of A is m. Let M be an A-module. A
projective resolution of M is called standard if it has the form

TTm 1

0 — Py — Adm Ty oo A% T A% T M 0
where d; = dime M, d; = dime Ker w1 and 7;: A% — Kerm;_q is a standard
projective cover for i = 2,...,m. Dually, we can define the standard injective

resolution of M.
The following easy result will be used to do the induction.

LEMMA 3.7.  Assume that an A-module Miq,p41) has the form

Mgy =0~ M, % 20y~ 0

and let Mgy = 0 ~ M, fo ... oz My, ~ 0. Assume that as an A-module,

My has the standard injective resolution: 0 — Myy — 1) = I — - — [} —
0. Forl =1,...,t, let Homa(DA,I;)(b) be the A-module whose b-th term is
Hom (DA, I}) and all other terms are zero. Then, in Db(fl), Miq p41) as a stalk
complez, is isomorphic to

0 — My — Homus (DA, I)(b) — --+ — Homa (DA, I)(b) — 0.

ProoF. In Db(fl), Mg p41) is isomorphic to the complex

0 — Mgy 2% (-~ 0~ Homa (DA, I}) ~ Ky ~ 0~ -2) — 0
where fy is naturally induced by the composition M; — Hom A(DA, Myi1) —
Hom (DA, I;) and K; is the 1-syzygy I /My, ;. Similarly, in DP(A), (-+- ~ 0 ~
Homyu (DA, I)) ~ Ky ~ 0~ ---) is isomorphic to

00— HOHIA(DA,Il)(b) — ( ~ 0~ HOHlA(DA712) ~Kyg~0n~ ) — 0
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By induction on ¢, we can prove the lemma. O

PROOF OF THEOREM 3.3.  Let C’(A,d ;)[a,b] be the subset of C*(A,d )
consisting of complexes with the property such that each term has the form:
Mgy =0~ M, %2 ... Fog
a<0andb>D0.

For any dimension vector sequence d ; of A—module, let d; = (d{fx) jez be a

special dimension vector array with d{& =0 for j # 0 and d% = dj. According
to Lemmas 3.4 and 3.7, we know that there is a constructible map

My ~ 0. Without loss of generality, we can assume

C'(A,dj)la,b+ 1] — C"(A,d})[a,b]

/ . . . .
for some d;, since only kernels and cokernels of morphisms are involved in order

to obtain the desired map. Note that Eg4, (A) = CP(A, d)a,b+ 1] for some a
and b. Dually, if we consider the standard projective resolution of M,, then we
can obtain a constructible map

C'(A,dj)la,b+1] — C*(A,d))a+1,b+1]

for some Q;/i‘ As for general d ;, we can use the mapping cones of morphisms
of complexes to obtain the above two constructible maps. For example, assume

that d; = (d,)jez with &4 = 0 for j # 0,1. Given M* := M® & M' €

CY(A,d ;)[a, b+ 1], note that M has the form

M@‘ZONMSE...&M;HN()

fori =0,1and g = (g¢)a<t<vt+1. Fori = 0,1, assume that M; | as an A-module,
has the standard injective resolution 0 — My, , — If — I3 — -+ — I} — 0.

Then by Lemma 3.7, in Db(fl), M?* is isomorphic to the mapping cone N*® of the
following map between two complexes:

0 — M[%,b} — Homyu (DA, I9)(b) — -+ — Homa (DA, I?)(b) — 0

fon | l

0 — M, — Homu(DA,I})(b) — -+ —= Homa(DA,I})(b) — 0
here Mi = 0~ M2 TS0 M5 0 for i = 0,1 and gia ) =
where My, ) == U~ Va ™~ ™ y ~ 0fori=0,1and gjap) = (9¢)a<t<o-
Note that N* € C’(A,d’;)[a,b]. By iterating the above construction and by

Lemma 3.4, we finally obtain a constructible map

h: Eq,(A) — C*(A,e4)[0,0]
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for some dimension vector array e; of A-modules. Note that e, can also be
viewed as a dimension vector sequence for mod A which is denoted by e 4. There-
fore, we have C?(A,e4)[0,0] = C*(A,ey,).

Assume that d; € m_l(d') for some d’ € Ko(miodfl) and e, € @_1(d")
for some d” € Ko(D"(A)). Then we have a map from E(A,d’) to C*(A,d"),
which is still denoted by h. For any X® € C%(A,d,), by definition, X* is
isomorphic to hpf0(X*®) in DP(A) /K" (P(/i)) Hence, we conclude that d” = d g4
and h is a locally constructible map. Set H; = pf@ and Hs = h. This completes
the proof of Theorem 3.3. O
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