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A GEOMETRIZATION OF THE HAPPEL FUNCTOR
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Abstract. The Happel functor is a full and faithful exact functor from
the derived categoryD

b(A) of bounded complexes over module category of a
finite-dimensional algebra A to the stable category mod Â of the repetitive

algebra Â of A. If A has finite global dimension, this functor is even
an equivalence of triangulated categories. Xiao, Xu, and Zhang defined
topological spaces associated with D

b(A). In this paper, we attach some
topological spaces for mod Â and construct maps between two kinds of

topological spaces as a geometric characterization of the Happel functor.

Résumé. Le foncteur Happel est un foncteur plein, fidèle, et exact
de la categorie derivée D

b(A) des complexes bornés sur la categorie des
modules d’une algèbre A de dimension finie dans la categorie stable mod Â

de l’algèbre répétitive Â de A. Si A est de dimension finie (en dimension
globale), ce foncteur sera même une équivalence des categories triangulées.
Les espaces topologiques associés à D

b(A) étaient définés par Xiao, Xu et
Zhang. Dans cette article, nous associons quelques espaces topologiques à la

categorie mod Â, et nous construisons des applications entre deux sortes des
espaces topologiques comme une caractérisation géometrique du foncteur
Happel.

1. Introduction. Let A be a basic finite-dimensional algebra over the
complex field C and modA the category of all finite-dimensional left A-modules.
For any dimension vector d, we can associate a module variety Ed(A) to the sub-
set of modA consisting of modules with dimension vector d (see [4] or Section 2.2
for details). In the same spirit, the geometry over modA can be generalized to
Cb(A), the category of bounded differential complexes of A-modules (see [3]), i.e.,
we can associate an algebraic variety Cb(A,d) to the subset of Cb(A) consisting of
complexes with dimension vector sequence d (see Section 2.2). The geometriza-
tion of Cb(A) naturally induces a geometrization of Pb(A), the subcategory of
Cb(A) of bounded projective complexes. In view of these constructions, we can
associate some topological spaces to the derived category Db(A) of bounded com-
plexes over modA and the homotopy category Kb

(

P(A)
)

of bounded projective
complexes (see [7] or Section 2.2). Then when A has finite global dimension,
this deduces a geometrization of the equivalence Db(A) ∼= Kb

(

P(A)
)

. Note that
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the constructible functions over these topological spaces can be applied to give
realization of Kac–Moody algebras (see [7]).

On the other hand, one can construct the repetitive algebra Â for A. In [2],
D. Happel discovered the following important connection between the derived
category of A and the stable module category of Â.

Theorem 1.1 (The Happel Functor). There exists an exact functor

F : Db(A) → mod Â

of triangulated categories which is full and faithful such that F |modA= id. In

particular, if gl.dimA <∞, then F is also dense.

The aim of this paper is to associate topological spaces to Db(A) and mod Â,
respectively, and to convert the above categorical equivalence into locally con-
structible maps (see Definition 3.2) which can be viewed as a geometrization of
the Happel functor F. As a byproduct, it also gives an explicit realization of the
Happel functor F.

2. Some preliminary results.

2.1. Repetitive algebra. Let A be a basic finite-dimensional C-algebra. Its
repetitive algebra, denoted by Â, is an infinite-dimensional Frobenius algebra.
The underlying vector space of Â is given by

Â =
(

⊕

i∈Z

A
)

⊕
(

⊕

i∈Z

DA
)

,

where D = HomC(−,C) is the standard duality. We denote the elements of
Â by (ai, ϕi)i, where ai ∈ A, ϕi ∈ DA, and almost all ai, ϕi are zero. The
multiplication is defined by

(ai, ϕi)i · (bi, ψi)i = (aibi, ai+1ψi + ϕibi)i.

Denote by mod Â the category of all finitely generated Â–modules. The Â-
module can be written in the following way:

(Mi, fi)i = · · · ∼Mi
fi
∼Mi+1 ∼ · · ·

where Mi ∈ modA are all but finitely many zero, and

fi : Mi −→ HomA(DA,Mi+1)

are A-linear maps such that HomA(DA, fi+1) · fi = 0 for all i ∈ Z. Let {P l |
1 ≤ l ≤ n} be a complete set of indecomposable projective A-modules up to
isomorphism, the indecomposable projective and injective Â-module has the form

Plj = · · · ∼ 0 ∼ P l ∼ DA⊗ P l ∼ 0 ∼ · · ·
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where P l is an indecomposable projective A-module and is put as the j-th term
of Plj for any j ∈ Z. We also often use the adjoint form

Ilj = · · · ∼ 0 ∼ HomA(DA, I
l) ∼ Kl ∼ 0 ∼ · · ·

where I l = HomA(A,P
l) is an indecomposable injective A-module and is put as

the j +1-th term of Ilj for any j ∈ Z. Note that Plj = Ilj for any 1 ≤ l ≤ n and
j ∈ Z.

For two Â-modules X and Y , let P(X,Y ) be the space of morphisms from
X to Y which factor through a projective Â-module. Then the stable category
mod Â, whose objects are the same as those of mod Â and whose morphisms
are given by the quotient spaces Hom(X,Y ) = HomÂ(X,Y )/P(X,Y ) carries a
natural structure of triangulated category (see [2]).

We have a canonical embedding of modA into mod Â as the composition of the
embedding from modA into mod Â and the canonical functor mod Â → mod Â
which sends M ∈ modA onto (Mi, fi)i ∈ mod Â where M0 =M and Mi = 0 for

i 6= 0. For any M ∈ modA, its injective hull and projective cover in mod Â are
described as follows:

· · · ∼ 0 ∼ HomA

(

DA, I(M)
)

∼ I(M) ∼ 0 ∼ · · ·

and
· · · ∼ 0 ∼ P (M) ∼ DA⊗ P (M) ∼ 0 ∼ · · ·

where I(M) and P (M) are the injective hull and the projective cover of M in
modA, respectively.

2.2. Topological spaces for derived categories. Recall that A ≃ CQ/J , where Q
is a quiver, CQ is the path algebra of Q and J is an admissible ideal generated
by a set R of relations in Q. Let I and Q1 be the sets of vertices and arrows of
the quiver Q, respectively, and let s, t : Q1 → I be maps such that any arrow α
starts at s(α) and terminates at t(α). For any dimension vector d =

∑

i aii ∈ NI,
we consider the affine space over C:

Ed(Q) =
⊕

α∈Q1

HomC(C
as(α) ,Cat(α)).

Any element x = (xα)α∈Q1
in Ed(Q) defines a representation M(x) of Q with

dimM(x) = d in a natural way. A relation in Q is a linear combination
∑r

i=1 λipi, where λi ∈ C and pi are paths of length at least two with s(pi) = s(pj)
and t(pi) = t(pj) for all 1 ≤ i, j ≤ r. For any x = (xα)α∈Q1

∈ Ed(Q) and any
path p = α1α2 · · ·αm in Q, set xp = xα1

xα2
· · ·xαm

. Then x satisfies a relation
∑r

i=1 λipi if
∑r

i=1 λixpi
= 0. If R is a set of relations in Q, then let Ed(Q,R)

be the closed subvariety of Ed(Q) which consists of all elements satisfying all
relations in R. Any element x = (xα)α∈Q1

in Ed(Q,R) defines in a natural way
a moduleM(x) of A ≃ CQ/J with dimM(x) = d (see [4]). For simplicity, define
Ed(A) = Ed(Q,R).
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For a dimension vector d, set the I-graded C-space V d =
⊕

i∈I C
ai . For a

sequence of dimension vectors dA = ( . . . , diA, . . . ) with only finitely many non-
zero entries, define Cb(A,dA) to be the subset of

∏

i∈Z

Edi
A
(A)×

∏

i∈Z

HomC(V
di
A , V d

i+1
A )

which consists of elements (xi, ∂i)i, where xi ∈ Edi
A
(A),M(xi) is the correspond-

ing A-module on the space V di
A and ∂i ∈ HomC(V

di
A , V d

i+1
A ) is an A-module

homomorphism from M(xi) to M(xi+1) with the property ∂i+1∂i = 0. In fact,
(

M(xi), ∂i
)

i
, or simply denoted by (xi, ∂i)i, is a complex of A-modules and dA

is called its dimension vector sequence (see [3], [7]).
Now we associate topological spaces to Db(A) as discussed in [7]. Let

K0

(

Db(A)
)

be the Grothendieck group of the derived category Db(A), and

dim: Db(A) → K0

(

Db(A)
)

the canonical surjection. Indeed, if X• = (Xi, ∂i)i ∈
Db(A), we obtain dimX• =

∑

i∈Z
(−1)i dimXi. It induces a canonical surjection

from the abelian group of dimension vector sequences to K0

(

Db(A)
)

, we still de-
note it by dim. Note that the set Cb(A,dA) of all complexes of fixed dimension
vector sequence dA in Cb(A) is an affine variety. Define

Cb(A,dA) =
⋃

dA∈dim−1(dA)

Cb(A,dA)

for any dA ∈ K0

(

Db(A)
)

. In general, we have two common ways to define topol-
ogy over Cb(A,dA) when we want that the topology over Cb(A,dA) is naturally
induced by the topology over Cb(A,dA). One is the weak topology, the other is
the strong topology. Here we prefer to use the strong topology, i.e., we choose
the following set as topology base of closed subsets:

B =
{

⋃

dA∈dim−1(dA)

CdA

∣

∣

∣
CdA

is the closed set of Cb(A,dA)
}

.

Moreover, we can define the quotient space Qb(A,dA) = Cb(A,dA)/ ∼, where
X• ∼ Y • if and only if the complexes X• and Y • are quasi-isomorphic, i.e., they
are isomorphic in Db(A). The topology of Qb(A,dA) is an quotient topology,
i.e., let π : Cb(A,dA) → Qb(A,dA) be the canonical surjection, then U is an open
(or closed) set of Qb(A,dA) if and only if π−1(U) is an open (or closed) set of
Cb(A,dA).

2.3. Topological spaces involving a repetitive algebra. The same constructions
discussed in Section 2.2 for algebra A can be applied to repetitive algebra Â.
First, in a similar manner, we can define the module variety over Â. For any

M ∈ mod Â, letM = (Mi, fi)i = · · · ∼Mi
fi
∼Mi+1 ∼ · · · , we call the sequence of

dimension vectors of A-modules ( . . . , dimMi, . . . ) the dimension vector sequence
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of M , simply denoted by dÂ = ( . . . , dÂ
i, . . . ) = dÂ(M) = ( . . . , dimMi, . . . ).

Then Ed
Â
(Â) is defined as the closed subset of

∏

i∈Z

Edi
A
(A)×HomC

(

V di
A ,HomC(DA,V

d
i+1
A )

)

which consists of elements (xi, fi)i, where xi ∈ Edi
A
(A), M(xi) is the corre-

sponding A-module on the space V di
A and fi ∈ HomC

(

V di
A ,HomC(DA,V

d
i+1
A )

)

is an A-module homomorphism from M(xi) to HomA

(

DA,M(xi+1)
)

with the
property HomA(DA, fi+1) · fi = 0 for all i ∈ Z. In fact, (M(xi), fi)i, or simply
denoted by (xi, fi)i, is an Â-module. Note that the above product only contains
finitely many non-zero terms so that the definition is well defined.

Next, we can construct topological space for Db(Â), the bounded derived
category of mod Â. Let dÂ = ( . . . , dj

Â
, . . . ) be the sequence of dimension vector

sequences of Â-modules with only finitely many non-zero entries, which will be
called the dimension vector array of Â-modules. Define Cb(Â,dÂ) to be the
subset of

∏

j∈Z

E
d
j

Â

(Â)×
∏

i,j∈Z

HomC(V
(dj

Â
)i , V (dj+1

Â
)
i

)

which consists of elements (xj , ∂ij)(i,j) where xj ∈ E
d
j

Â

(Â), M(xj) is the corre-

sponding Â-module,

∂ij ∈ HomC(V
(dj

Â
)
i

, V (dj+1

Â
)
i

)

is an A-module homomorphism fromM(xj)i toM(xj+1)i and ∂j = (∂ij)i∈Z is an

Â-module homomorphism fromM(xj) toM(xj+1) with the property ∂j+1∂j = 0.
Note that

(

M(xj), ∂ij
)

(i,j)
, or simply denoted by (xj , ∂ij)(i,j), is a complex of

Â-modules and dÂ is its dimension vector array.

By using a similar way, we can also define Cb(Â,dÂ) and Qb(Â,dÂ) for any

dÂ ∈ K0

(

Db(Â)
)

.

We now fix a complete set of indecomposable projective-injective Â-modules
(up to isomorphism) {Plj | 1 ≤ l ≤ n, j ∈ Z} (= {Ilj}). Let Hb(Â) be the

full subcategory of Cb(Â) which consists of almost projective-injective complexes
(special case of ‘almost projective complexes’ defined by Saorin and Huisgen-
Zimmermann in [3]), i.e., the complexes H• = (Hk, ∂k) such that: for k 6= 0,
Hk ∼=

⊕

ekljPlj where eklj are nonnegative integers, all but finitely many being

zero; for k = 0, H0 is an Â-module. For k 6= 0, denote by L(Hk) the vector (eklj ).

The sequence L(H•) =
(

. . . , L(H−1), dÂ(H
0), L(H1), . . .

)

is called the almost
projective-injective dimension sequence of H•. For a fixed almost projective-
injective dimension sequence L = L(H•), the corresponding dimension vector
array is dÂ(L) =

(

dÂ(H
k)
)

, we define Hb(Â,L) to be a (locally closed) subset

of Cb
(

Â,dÂ(L)
)

which consists of elements (xj , ∂ij)(i,j) where xj ∈ E
d
j

Â

(Â) for

any j ∈ Z, and M(xj) is the corresponding Â-module isomorphic to Hj for
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any j 6= 0. Recall that the canonical surjection dim: Db(Â) → K0

(

Db(Â)
)

can
induce a canonical surjection from the abelian group of dimension vector arrays
of Â-modules to K0

(

Db(Â)
)

, we still denote it by dim. We may define

Hb(Â,L) =
⋃

d
Â
(L)∈dim−1(L)

Hb(Â,L)

for any L ∈ K0

(

Db(Â)
)

.

Then Hb(Â,L) has the natural topological structure with the topological base
of closed subsets given by

B =
{

⋃

d
Â
(L)∈dim−1(L)

BL

∣

∣

∣
BL is a closed set of Hb(Â,L)

}

.

We also have the quotient space QHb(Â,L) = Hb(Â,L)/ ∼, where X• ∼ Y • in
Hb(Â,L) if and only if X• and Y • are quasi-isomorphic, i.e., they are isomorphic
in Db(Â). The topology of QHb(Â,L) is the quotient topology derived from the
topology of Hb(Â,L).

For X,Y ∈ mod Â, we say X ∼ Y if there exists u : X → Y such that the
mapping cone Cone(u) of the map u is an injective Â-module or Cone(u) = 0.
This condition is equivalent to that there exists an isomorphism of Â-modules
X ⊕ I ′ ≃ Y ⊕ I ′′ for some injective Â-modules I ′ and I ′′.

Let K0(mod Â) be the Grothendieck group of triangulated category mod Â
and Dim: mod Â→ K0(mod Â) be the canonical surjective. It induces a canon-
ical surjective map from the abelian group of dimension vector sequences dÂ to

K0(mod Â) which is still denoted by Dim. In the same way as used in Section 2.2,
we can define:

E(Â,d′

Â
) =

⋃

d
Â
∈Dim−1(d′

Â
)

Ed
Â
(Â) and QE(Â,d′

Â
) = E(Â,d′

Â
)/ ∼

for any d′

Â
∈ K0(mod Â), where “∼” is the equivalence relation defined on

mod Â.

3. Main theorem. In this section, we will prove the main result of The-
orem 3.3. Throughout, we assume that A has finite global dimension.

Definition 3.1. Let X and Y be algebraic varieties over C. A map fc : X →
Y is called constructible if there exists a finite stratification of locally closed
subsets X =

⊔t
l=1 Xl such that the restriction of fc to each Xi is a morphism of

varieties.

Definition 3.2. Let X =
⊔

i∈S Xi and Y =
⊔

j∈T Yj be disjoint unions
of algebraic varieties Xi and Yj for countable sets S and T , respectively. Let
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X and Y be the quotient spaces with respect to some equivalence relations,
respectively. A map f : X → Y is called locally constructible with respect to the
above disjoint unions if f |Xi

is a constructible map and the induced quotient
map qf is a bijection. If g : Y → X is a locally constructible map and qg is the
inverse of qf , then we say f and g constitute a pair of locally constructible maps
with respect to disjoint unions.

Note that the composition of two locally constructible maps is still locally
constructible.

Theorem 3.3. For any dA ∈ K0(D
b(A)), there exist d′

Â
∈ K0(mod Â) and

a pair of locally constructible maps

H1 : C
b(A,dA) → E(Â,d′

Â
) and H2 : E(Â,d

′

Â
) → Cb(A,dA)

with respect to disjoint unions:

Cb(A,dA) =
⋃

dA∈dim−1(dA)

Cb(A,dA) and E(Â,d′

Â
) =

⋃

d
Â
∈Dim−1(d′

Â
)

Ed
Â
(Â).

The proof will be made along the following commutative diagram:

(3.1) Cb(A,dA)

πA

��

θ
// Cb(Â,dÂ)

π
Â

��

f̃
// Hb(Â,L)

π
Â

��

p
// E(Â,d′

Â
)

π
Â

��

Qb(A,dA)
qθ

// Qb(Â,dÂ)
qf̃

// QHb(Â,L)
qp

// QE(Â,d′

Â
)

where θ is derived from the canonical embedding from modA to mod Â, f̃ and
p will be discussed later.

In the following, all statements involving disjoint unions and equivalence re-
lations have been described in the previous section. For simplicity, we will not
emphasis the expression “with respect to disjoint unions”. In general, we cannot
guarantee the maps in diagram (3.1) are morphisms of varieties. Instead, we
consider the constructible maps [6].

The following result is an immediate consequence of the knowledge of linear
algebra.

Lemma 3.4. Let A be a basic finite-dimensional C-algebra. Define φ : NI →
N which maps d =

∑

i aii to
∑

i ai. Let Ed(A) =
⋃

d∈φ−1(d) Ed(A) be the module

variety of all A-modules M with dimCM = d. For any d1, d2 ∈ N, let V (d1, d2)
be the subset of Ed1

(A)×Ed2
(A)×HomC(C

d
1,C

d2) consisting of triple (M1,M2, f)
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such that M1 ∈ Ed1
(A), M2 ∈ Ed2

(A) and f ∈ HomA(M1,M2). Then there exist

constructible maps:

Ker : V (d1, d2) →
⊔

d≤d1

Ed(A)×HomC(C
d,Cd1)

and

Coker : V (d1, d2) →
⊔

d≤d2

Ed(A)×HomC(C
d2 ,Cd)

such that Ker(M1,M2, f) = (Ker f, e) and Coker(M1,M2, f) = (Coker f, π),
where e : Ker f → M1 and π : M2 → Coker f are the natural embedding and

projection, respectively.

Let X• ∈ Cb(Â) be the complex as follows:

0 −→ X−n ∂−n
−−→ · · · −→ X−1 ∂−1

−−→ X0 ∂0−→ X1 −→ · · ·
∂m−1
−−−→ Xm −→ 0.

As discussed in [1], we can construct an almost projective-injective complex
quasi-isomorphic to X•. We start with the following commutative diagram:

0 −→ I−n −→ I−n+1 −→ · · · −→ Z0 ∂0−→ · · · −→ Pm−1 −→ Pm −→ 0

where I−n is the injective hull of X−n, Y −n+1 is the corresponding pushout,
Pm is the projective cover of Xm and Y m−1 is the corresponding pullback. The
below complex is quasi-isomorphic to the above complex X• (see Lemma 2.6
in [7]). By iterating this process, we can obtain the complex with the following
form:

0 −→ I−n −→ I−n+1 −→ · · · −→ Z0 ∂0−→ · · · −→ Pm−1 −→ Pm −→ 0

where the terms on the left-hand side of the 0-th term are injective modules and
the terms on the right-hand side of the 0-th term are projective modules. This
complex is quasi-isomorphic to X•. We set F (X•) to be this complex. Using a
routine method, we can easily verify that F is a functor from Cb(Â) to Cb(Â).

Proposition 3.5. For a fixed dimension vector array dÂ of Â-modules,

the functor F : Cb(Â) → Cb(Â) induces a constructible map

f : Cb(Â,dÂ) → Hb(Â,L)

for some almost projective-injective dimension sequence L.

Proof. For any M• ∈ Cb(Â,dÂ) with dÂ = (dj
Â
)j∈Z and dj

Â
= ((dj

Â
)i)i∈Z,

as a complex, assume that M• has the following form:

· · · −→M j −→M j+1 −→ · · · .
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Each M j as an Â-module has the form as follows:

· · · ∼M j
i ∼M j

i+1 ∼ · · ·

with dimM j
i = (dj

Â
)
i
. There are standard surjective A-morphisms: Ad

j
i ։ M j

i

where dji = dimCM
j
i . For a given A-moduleM j

i , denote byM
j
i (i) the Â-module

whose i-th term is M j
i and all other terms are 0. Therefore, the above standard

surjective A-morphism induces a standard surjective Â-morphism: P j
i →M j

i (i)

where P j
i = · · · ∼ 0 ∼ Ad

j
i ∼ DA ⊗A Ad

j
i ∼ 0 ∼ · · · is a projective-injective

Â-module. Let P j

Â
=

⊕

P j
i , then there is a surjective Â-morphism from P j

Â
to

M j which is called standard projective cover. Dually, we can write down the
standard injective hull Ij

Â
for M j . Then we obtain a complex N• ∈ Cb(Â,d′

Â
)

for some dimension vector array d′

Â
with the following commutative diagram

N•

��

· · · // N j−1

��

// P j

Â
//

��

· · ·

M• : · · · // M j−1 // M j // · · ·

where N j−1 is the pull-back. Note that the process of taking pull-back only in-
volves the operation of taking kernel of some morphism, therefore by Lemma 3.4,
the above construction induces a constructible map from Cb(Â,dÂ) to Cb(Â,d′

Â
).

By iterating this construction as the way of constructing F (X•), we can obtain a
constructible map f : Cb(Â,dÂ) → Hb(Â,L) for some almost projective-injective
dimension sequence L. �

Proposition 3.6. For any dÂ ∈ K0

(

Db(Â)
)

, under the quotient topol-

ogy, the constructible map f discussed in Proposition 3.5 induces a locally con-

structible map

f̃ : Cb(Â,dÂ) → Hb(Â,L)

where L = dÂ.

Proof. Given any X• ∈ Cb(Â). Since F (X•) is quasi-isomorphic to X•,
they correspond to the same element in K0

(

Db(Â)
)

. Therefore

L = dim
(

dÂ

(

L
(

F (X•)
)))

= dim
(

dÂ(X
•)
)

= dÂ.

The map f̃ can be derived from f naturally. There exists a canonical embedding
ẽ : Hb(Â,L) → Cb(Â,dÂ). Denote by qf̃ and qẽ the quotient maps of f̃ and ẽ

(see Diagram 3.1), respectively. It is easy to verify that qf̃ and qẽ are inverse to
each other. The statement of the proposition will follow immediately. �
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For any H• ∈ Hb(Â,L), let H0 be its 0-th term and d′

Â
= Dim

(

dÂ(H
0)
)

.

Then we can define a map p : Hb(Â,L) → E(Â,d′

Â
) with p(H•) = H0. For

X•, Y • ∈ Hb(Â,L), if X• and Y • are isomorphic in Db(Â), then p(X•) ∼ p(Y •)
in mod Â (see Proposition 7 in [1]). Note that X• is isomorphic to p(X•) in
Db(Â)/Kb

(

P(Â)
)

which is equivalent as a triangulated category to mod (Â)

(see [5]). Hence, the quotient map qp′ of the natural embedding p′ : E(Â,d′

Â
) →

Hb(Â,L) is the inverse of the quotient map qp of p. It is clear that p and p′ is a
pair of locally constructible maps.

For any dimension vector sequence dÂ ∈ Dim−1(d′

Â
), we can construct the

map
h : Ed

Â
(Â) −→ Cb(A, eA)

by induction for some dimension vector sequence eA of A-modules.
Assume that the global dimension of A is m. Let M be an A-module. A

projective resolution of M is called standard if it has the form

0 −→ Pm+1 −→ Adm
πm−−→ · · · −→ Adi

πi−→ · · · −→ Adi
π1−→M −→ 0

where d1 = dimCM , di = dimC Kerπi−1 and πi : A
di → Kerπi−1 is a standard

projective cover for i = 2, . . . ,m. Dually, we can define the standard injective
resolution of M .

The following easy result will be used to do the induction.

Lemma 3.7. Assume that an Â-module M[a,b+1] has the form

M[a,b+1] = 0 ∼Ma
fa
∼ · · ·

fb
∼Mb+1 ∼ 0

and let M[a,b] = 0 ∼ Ma
fa
∼ · · ·

fb−1
∼ Mb ∼ 0. Assume that as an A-module,

Mb+1 has the standard injective resolution: 0 →Mb+1 → I1 → I2 → · · · → It →
0. For l = 1, . . . , t, let HomA(DA, Il)(b) be the Â-module whose b-th term is

HomA(DA, Il) and all other terms are zero. Then, in Db(Â), M[a,b+1] as a stalk

complex, is isomorphic to

0 −→M[a,b] −→ HomA(DA, I1)(b) −→ · · · −→ HomA(DA, It)(b) −→ 0.

Proof. In Db(Â), M[a,b+1] is isomorphic to the complex

0 −→M[a,b]
f̄b
−→

(

· · · ∼ 0 ∼ HomA(DA, I1) ∼ K1 ∼ 0 ∼ · · ·
)

−→ 0

where f̄b is naturally induced by the composition Mb → HomA(DA,Mb+1) →
HomA(DA, I1) and K1 is the 1-syzygy I1/Mb+1. Similarly, in Db(Â), (· · · ∼ 0 ∼
HomA(DA, I1) ∼ K1 ∼ 0 ∼ · · · ) is isomorphic to

0 −→ HomA(DA, I1)(b) −→
(

· · · ∼ 0 ∼ HomA(DA, I2) ∼ K2 ∼ 0 ∼ · · ·
)

−→ 0
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By induction on t, we can prove the lemma. �

Proof of Theorem 3.3. Let Cb(Â,dÂ)[a, b] be the subset of Cb(Â,dÂ)
consisting of complexes with the property such that each term has the form:

M[a,b] = 0 ∼ Ma
fa
∼ · · ·

fb−1
∼ Mb ∼ 0. Without loss of generality, we can assume

a ≤ 0 and b ≥ 0.
For any dimension vector sequence dÂ of Â-module, let dÂ = (dj

Â
)j∈Z be a

special dimension vector array with dj
Â
= 0 for j 6= 0 and d0

Â
= dÂ. According

to Lemmas 3.4 and 3.7, we know that there is a constructible map

Cb(Â,dÂ)[a, b+ 1] → Cb(Â,d′

Â
)[a, b]

for some d′

Â
, since only kernels and cokernels of morphisms are involved in order

to obtain the desired map. Note that Ed
Â
(Â) = Cb(Â,dÂ)[a, b + 1] for some a

and b. Dually, if we consider the standard projective resolution of Ma, then we
can obtain a constructible map

Cb(Â,dÂ)[a, b+ 1] → Cb(Â,d′′

Â
)[a+ 1, b+ 1]

for some d′′

Â
. As for general dÂ, we can use the mapping cones of morphisms

of complexes to obtain the above two constructible maps. For example, assume

that dÂ = (dj
Â
)j∈Z with dj

Â
= 0 for j 6= 0, 1. Given M• := M0 g

−→ M1 ∈

Cb(Â,dÂ)[a, b+ 1], note that M i has the form

M i = 0 ∼M i
a

fi
a∼ · · ·

fi
b∼M i

b+1 ∼ 0

for i = 0, 1 and g = (gt)a≤t≤b+1. For i = 0, 1, assume thatM i
b+1 as an A-module,

has the standard injective resolution 0 → M i
b+1 → Ii1 → Ii2 → · · · → Iil → 0.

Then by Lemma 3.7, in Db(Â), M• is isomorphic to the mapping cone N• of the
following map between two complexes:

0 // M0
[a,b]

g[a,b]
��

// HomA(DA, I
0
1 )(b)

��

// · · · //

��

HomA(DA, I
0
l )(b)

��

// 0

0 // M1
[a,b]

// HomA(DA, I
1
1 )(b)

// · · · // HomA(DA, I
1
l )(b)

// 0

where M i
[a,b] := 0 ∼ M i

a

fi
a∼ · · ·

fi
b−1
∼ M i

b ∼ 0 for i = 0, 1 and g[a,b] = (gt)a≤t≤b.

Note that N• ∈ Cb(Â,d′

Â
)[a, b]. By iterating the above construction and by

Lemma 3.4, we finally obtain a constructible map

h : Ed
Â
(Â) → Cb(Â, eÂ)[0, 0]
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for some dimension vector array eÂ of Â-modules. Note that eÂ can also be
viewed as a dimension vector sequence for modA which is denoted by eA. There-
fore, we have Cb(Â, eÂ)[0, 0] = Cb(A, eA).

Assume that dÂ ∈ Dim−1(d′) for some d′ ∈ K0(mod Â) and eA ∈ dim−1(d′′)

for some d′′ ∈ K0

(

Db(A)
)

. Then we have a map from E(Â,d′) to Cb(A,d′′),
which is still denoted by h. For any X• ∈ Cb(A,dA), by definition, X• is
isomorphic to hpf̃θ(X•) in Db(Â)/Kb

(

P(Â)
)

. Hence, we conclude that d′′ = dA

and h is a locally constructible map. Set H1 = pf̃θ and H2 = h. This completes
the proof of Theorem 3.3. �
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