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Abstract. We introduce a notion of a smooth L
∞ form on singular

(semialgebraic) spaces X in R
n. An L

∞ form is the data of a stratification
Σ of X and a collection of smooth forms ω on the nonsingular strata with
matching tangential components on the adjacent strata and bounded size

(in the metric induced from R
n). We prove Stokes’ Theorem and Poincaré’s

Lemma for L
∞ forms. As a result we obtain a De Rham type theorem

establishing a natural isomorphism between the singular cohomology and

the cohomology of smooth L
∞ forms.

Résumé. On introduit la notion d’une forme L
∞ pour des espaces

singuliers semialgébriques. Une forme lisse L
∞ est la donnée d’une strat-

ification et d’une famille de forme lisses sur les strates coincidant le long
des strates adjacentes. On prouve la formule de Stokes et le lemme de
Poincaré pour les formes L

∞. On en déduit un théorème de type De Rham

établissant un isomorphisme naturel entre la cohomologie des formes L
∞

et la cohomologie singulière.

1. Introduction In a recent paper J.-P. Brasselet and M. J. Pflaum [2]
proved a De Rham type theorem for Whitney functions. Namely, they showed
that the cohomology of the complex of Whitney differential forms naturally co-
incides with the singular cohomology of a subanalytic space.

In the present work we study the cohomology of the co-chain complex of the
so-called smooth L∞ forms (see Definition 2.7), which is intrinsically defined for
the singular space in question.

The singular spaces considered in this paper are semialgebraic subsets of Rn

but the results can be generalized to subanalytic sets. Let X ⊂ R
n be a semial-

gebraic set. A stratification of X is a collection of smooth (semialgebraic) locally
closed manifolds (strata) in X such that the boundary of each stratum is a union
of strata.
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We introduce a version of De Rham theory for L∞ differential forms on X

and prove the Stokes’ formula and a De Rham type theorem for it. An L∞

differential form on X is, roughly speaking, a data of a stratification Σ of X and
a collection of smooth forms on the nonsingular strata such that the tangential
components of the forms on the adjacent strata match and the size of the form
is bounded (in the metric induced from R

n). We consider two L∞ forms to be
equivalent if there exists a stratification of X on which the restrictions of the two
forms coincide. The exterior derivative of such forms is defined by the exterior
derivatives of their “components” on each stratum. The L∞ forms endowed with
the L∞ exterior derivative form a co-chain complex. The main theorems of this
paper is the Stokes Theorem and a De Rham type theorem (Theorem 2.14).
Namely, we prove that the map

ω
ψ
7→ “c 7→

∫

c

ω” ,

from the complex of L∞ forms to the space of semialgebraic singular co-chains, is
a natural map of chain complexes that induces an isomorphism on cohomology.

A detailed version of our results will appear in [9].

2. The Main Results All of the considered subsets and mappings will be
assumed to be semialgebraic, except the differential forms which will be smooth
on each stratum. Generalities on semialgebraic sets can be found in [1]. We
begin by introducing the basic notations and definitions.

Notation 2.1. Let X ⊂ R
n. Denote by X the closure of X and by ∂X :=

X −X the boundary of X.
Suppose that f : X → Y is a map of topological spaces. We write f(x) → y

as x→ a to denote limx→a f(x) = y.

Definitions 2.2. A stratified space (X,Σ) is a set X ⊂ R
n together with a

partition (stratification) Σ of X into locally closed orientable manifolds (strata)
such that the boundary of each stratum is a union of strata in Σ. If S and S′

are two strata in Σ such that S′ ⊂ ∂S, then we write S′ ≤ S. A refinement of Σ
is a stratification Σ′ such that each stratum of Σ is a union of strata of Σ′; we
write Σ′ ≺ Σ.

A tangent bundle of (X,Σ) is TX :=
⋃
x∈X{x} × TxX ⊂ R

n × R
n with the

subspace topology, where TxX := TxS , x ∈ S ∈ Σ. Similarly, define the exterior
product of the tangent bundle by

∧kTX :=
⋃
x∈X

{x} × ∧kTxX ⊂ ∧
k(TRn).

A stratified k-form on X is a pair (ω,Σ), where Σ is a stratification of X and
ω = (ωS)S∈Σ, where ωS is a continuous differential k-form on S ∈ Σ, such that
the graph of ω : ∧k TX → R, (x, ξ) 7→ ω(x; ξ) is closed in ∧kTX × R.



26 L. SHARTSER AND G. VALETTE

We say that such form ω is smooth if ωS is smooth for every S. The exterior
derivative of a smooth stratified form (ω,Σ) is then defined as (dωS)S∈Σ and
denoted by (dω,Σ).

The weak exterior derivative of a stratified form (ω,Σ) is defined as (dωS)S∈Σ

(whenever exists) and denoted by (dω,Σ). Let us recall that a k-form ωS on a
smooth orientable manifold S is weakly differentiable if there exists a (k+1)-form
ω′ on S such that for any smooth (n−k−1)-form ϕ on S, with compact support,
we have ∫

S

ω′ ∧ ϕ = (−1)k+1

∫

S

ω ∧ dϕ.

We say that ω′ is the weak exterior derivative of ω. When no confusion may
arise, we write ω, dω and dω instead of (ω,Σ), (dω,Σ) and (dω,Σ).

If (ω,Σ) is a stratified form then a refinement Σ′ ≺ Σ induces a stratified form,
(ω,Σ′) in a canonical way. Furthermore, given a stratified k-form (ω,Σ) on X,
we say that ω is bounded if |ωS | ≤ C for all S ∈ Σ and some positive constant
C, where the norm | · | is induced from R

n. The set of all smooth stratified and

bounded k-forms on X with stratified exterior derivatives is denoted by Ω̃k(X).

Bounded stratified forms have the following continuity property.

Lemma 2.3. If ω = (ωS ,Σ) is a stratified and bounded k-form then for any
pair (S, S′) ∈ Σ × Σ with S′ ≤ S, any sequence of points pn ∈ S such that
limn→∞ pn = p ∈ S′, and any sequence of multivectors ξn ∈ ∧

kTpnS with

lim
n→∞

ξn = ξ ∈ ∧kTpS
′,

we have
lim
n→∞

ω(pn; ξn) = ω(p; ξ).

Proof. Since ω is bounded, there exists a subsequence (pnj
, ξnj

) and a real
number a such that limj→∞ ω(pnj

; ξnj
) = a. But since the graph of ω is closed,

it follows that a = ω(p, ξ). �

Definition 2.4. Let (X,Σ) and (Y,Σ′) be two stratified sets in R
n. A

continuous map h : X → Y is semi-differentiable (see [7]) if

(i) for any S ∈ Σ there is a stratum S′ ∈ Σ′ such that h maps S to S′ in a
smooth way;

(ii) The differentials dhi, i = 1, . . . , n of the components of h are stratified and
bounded forms on (X,Σ).

Definition 2.5. An L∞ map is a map f : X → Y such that there exists a
stratification ΣX of X and a stratification ΣY of Y with respect to which f is a
semi-differentiable map.

Note that L∞ maps are Lipschitz. Conversely, we have the following.
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Proposition 2.6. Let X ⊂ R
n, Y ⊂ R

m. Then the map f : X → Y is
Lipschitz if and only if f is an L∞ map.

The proof of this proposition is in [9]. We can now define a notion of an L∞

form.

Definition 2.7. Let X be a set and define an equivalence relation on
Ω̃k(X):

(ω,Σ) ∼ (ω′,Σ′)

if there exists a stratification Σ′′ that refines both Σ and Σ′ such that

(ω|Σ′′ ,Σ′′) = (ω′|Σ′′ ,Σ′′).

Denote by Ωk
∞
(X) the classes of equivalence of “∼”. An element of Ωk

∞
(X) is

called an L∞ form.

Remark 2.8. The exterior algebra structure is defined on Ω•

∞
(X) :=⋃

k Ω
k
∞
(X) in a natural way. The sum of two L∞ forms ω and ω′ is an L∞

form ω′′ that can be constructed as follows. If (ω,Σ) and (ω,Σ′) represent ω and
ω′, then (ω + ω′,Σ′′) represents ω′′ where Σ′′ is any stratification refining both
Σ and Σ′. The exterior product is defined in a similar fashion.

Pullback of L∞ forms Let f : X → Y be an L∞ map and ω ∈ Ωk
∞
(Y ) be an

L∞ k-form. Then, for any stratification ΣX of X and ΣY of Y for which f is
semi-differentiable and (ω,ΣY ) is a stratified smooth form, the form defined by
f |∗Sω on each S ∈ ΣX defines a smooth stratified form f∗ω called the pullback
of ω.

Proposition 2.9. In the situation above, the pullback f∗ω defines a unique
L∞ form.

For a proof, see [9].

Integration of L∞ forms. Let X ⊂ R
n and A ⊂ R

k be k-dimensional oriented
compact semialgebraic submanifold with corners of Rk, where k ≤ n and the
orientation of A is induced by the standard orientation of Rk. Let σ : A→ X be
a map. We want to define the integral of an L∞ k-form ω over σ. Let ΣX and
ΣA be stratifications of X and A respectively such that (σ∗ω,ΣA) is a stratified
form. The integral of ω over σ is defined by

(2.1)

∫

σ

ω :=
∑

S∈Σk
A

∫

S

σ∗

Sω .

Proposition 2.10. Let X, ω, A and σ be as above then the integral of ω
over σ, as defined in (2.1), is well defined (independent of the stratification).
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For a proof see [9].

Definitions 2.11. Let X ⊂ R
n. Define (Ck(X), ∂)k∈Z+

to be the chain
complex generated by continuous semialgebraic singular simplices, σ : ∆k → X,
where ∆k is the standard k simplex in R

k, and ∂ is the standard boundary op-
erator [13, p. 142]. Set Ck(X) := Hom(Ck(X),R) to be the complex of cochains
endowed with differential d := ∂∗.

We extend integration of L∞ forms over all chains as follows. Let c =∑L
j=1 ajσj ∈ Ck(X), where σj is a singular simplex, aj ∈ R for all j, and

suppose that ω ∈ Ωk
∞
(X). Define

∫

c

ω :=

L∑

j=1

aj

∫

σj

ω .

The De Rham Theorem

Definition 2.12. Let X ⊂ R
n be a set. Define Hk(X) to be the cohomol-

ogy of Ck(X) and Hk
∞
(X) to be the cohomology of Ωk

∞
(X).

Remark 2.13. Semialgebraic homology was studied by many authors (see
[6] for a list of references). In 1981 Hans Delfs [3] proved that semialgebraic
homology is isomorphic to simplicial homology of a semialgebraic set over a real
closed field. In 1996 Woerheide [14] showed that homology theory of singular de-
finable simplices in a o-minimal structure satisfies Eilnberg-Steenrod axioms and
therefore coincides with the standard singular homology theory. Complete proofs
of comparison theorems for o-minimal homology (in particular for semialgebraic
sets over R ) can be found in a recent paper by Edmundo and Wortheide [4].

The main result of this article is

Theorem 2.14 (De Rham Theorem). Let X ⊂ R
n be a compact set then

the map

ψ : Ωk
∞
(X)→ Ck(X) , ψ(ω)c :=

∫

c

ω

induces an isomorphism on cohomology.

3. Stokes’ Theorem In this section we introduce the Stokes’ formula for
semialgebraic chains and L∞ forms. Stokes’ formula for singular spaces was
previously considered in the literature, for example, in [8] Stokes’ formula is
proven for subanalytic leaves. Here and in [9] we give a different proof of this
fact.
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Theorem 3.1 (Stokes’ Formula). Let X ⊂ R
n and c ∈ Ck(X). For any

smooth L∞ (k − 1)-form ω on X:

∫

c

dω =

∫

∂c

ω .

A detailed proof of this theorem can be found in [9]. Here we give only a
sketch of a proof.

Stratify ∆k and X such that the image of each stratum of ∆k is a stratum of
X and ω is smooth on every stratum in X . It is enough to prove the formula
for each stratum S of X, i.e.,

∫

S

dω =

∫

∂S

ω .

Let S be a stratum in X. We approximate S from inside by a family of smooth
manifolds Sε, ε > 0, and show that

lim
ε→0

∫

Sε

dω =

∫

S

dω and lim
ε→0

∫

∂Sε

ω =

∫

∂S

ω .

Clearly,

lim
ε→0

∫

Sε

dω =

∫

S

dω .

So, we only have to show that

(3.1) lim
ε→0

∫

∂Sε

ω =

∫

∂S

ω .

By using a version of the “wing lemma” we may find a subset B ⊂ ∂S, dimB ≤
k − 2, such that S looks like a manifold with boundary near points a ∈ ∂S −B.
For any δ > 0 set

Aδ := {x ∈ ∂S : dist (x,B ∪ (k − 2)-skeleton of ∂S) > δ},

Bδ := {x ∈ S : dist (x,B ∪ (k − 2)-skeleton of ∂S) ≤ δ}.

Note that ∫

∂S

ω =

∫

Aδ

ω +

∫

∂S∩Bδ

ω .

The stratum S near Aδ is a manifold with boundary. Of course set Uδ :=
S − Bδ is a neighborhood of Aδ in S and ∂Sε ⊂ Uδ ∪ Bδ for every ε > 0. We
split ∫

∂Sε

ω =

∫

∂Sε∩Uδ

ω +

∫

∂Sε∩Bδ

ω .

Observe that ∫

Aδ

ω = lim
ε→0

∫

∂Sε∩Uδ

ω .
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To complete the proof of (3.1) we only have to show that
∫
∂Sε∩Bδ

ω and
∫
∂S∩Bδ

ω

are small in terms of δ (uniformly in ε). We show that by using the well known
Cauchy–Crofton formula [5] cf. Section 2.1 of [12].

Theorem 3.2 (Cauchy–Crofton formula). Let A ⊂ R
n, set

KP
j (A) := {q ∈ P : #

(
π−1
P (q) ∩A

)
= j},

where πP is an orthogonal projections from R
n to P and #S is the cardinality

of a set S. Then,

(3.2) µk(A) =

∫

P∈Gk
n

∞∑

j=1

jµk(K
P
j (A))dγ(P ) ,

on the Grassmanian, Gkn of k-dimensional linear subspaces of G
(k−1)
k .

Substituting Bδ ∩ ∂Sε in formula (3.2) we obtain

µk−1(Bδ ∩ ∂Sε) =

∫

P∈G
k−1
n

N(δ,ε)∑

j=1

jµk−1(K
P
j (Bδ ∩ ∂Sε))dγ(P ) ,

where

N(δ, ε) := max{#
(
π−1
P (q) ∩Bδ ∩ ∂Sε

)
<∞ : P ∈ G

k−1
n , q ∈ P} .

There exists N0 ∈ N such that N(ε, δ) < N0 as a consequence of uniform bound-
ness principle for families of semialgebraic sets. Observe that

KP
j (Bδ ∩ ∂Sε) ⊂ πP (Bδ) .

But since Bδ is a set of points in S at a distance of at most δ from a set of
dimension at most k − 2, it follows that µk−1(πP (Bδ)) → 0 as δ → 0. Similar
computation shows that

∫
∂S∩Bδ

ω tends to 0 as δ → 0. �

4. The Poincaré Lemma The main ingredient of any proof of a De Rham
type Theorem is its local version, namely, the Poincaré Lemma.

Theorem 4.1 (Poincaré Lemma). Let ω be a smooth closed L∞ k-form on
X ⊂ R

n and p ∈ X. Then, there exists a neighborhood Up of p in X, and an
L∞ (k − 1)-form γ defined on Up such that ω = dγ in Up.

We split the proof into Lemma 4.2 and Proposition 4.3.
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Lemma 4.2. Let ω be a closed smooth L∞ k-form on X ⊂ R
n and p ∈ X.

Then, there exists a neighborhood Up of p in X and a weakly differentiable L∞

(k − 1)-form γ defined on Up such that ω = dγ on Up.

Proposition 4.3. Let ω be a closed L∞ k-form on X, p ∈ X and U a
neighborhood of p in X. Let ΣU be a stratification of U given by Lemma 4.2
such that (ω,ΣU ) is a stratified form. Then, there exists a sequence of L∞ forms
on U , γ0, . . . , γn that satisfy the following properties.

(i) dγj = ω for all j.
(ii) γj is smooth on the l-dimensional strata, for all l ≤ j.

The proof of Proposition 4.3 uses a smoothing technique; for details see [9].
The idea of the proof of Lemma 4.2 is to proceed by induction on dimUp. In
dimension 1 the statement is the fundamental theorem of calculus. For dimUp >

1, take a stratification Σ for which (ω,Σ) is a stratified form and construct a
Lipschitz strong deformation retract r : Up × I → Up to a set N ⊂ Up of smaller
dimension such that r preserves the strata of Σ and r∗ω is still an L∞ form.
Here I := [0, 1]. Then, r∗ω = α+dt∧β where t is the parameter in I and α and
β are smooth stratified forms on Up × I that do not contain dt. Define

γ0 :=

∫ 1

0

β(x, t)dt .

A straightforward computation shows that dγ0 = r∗1ω − r∗0ω, where rt(x) :=
r(x, t). Note that r∗1ω = ω and r∗0ω|N = ω|N . By the induction hypothesis for
the set N and the form ω|N we obtain a form γ′ on N such that ω|N = dγ′. But
then, r∗0ω = dr∗0γ

′. Thus, we get d(γ0 + r∗0γ
′) = ω.

The main difficulty in the proof is to find the deformation retract r that would
preserve the strata and L∞ forms. For that purpose we construct a Lipschitz
deformation retract r as described in the following key theorem (cf. [11]).

Theorem 4.4. Let (X,ΣX) be a stratified set in R
n and p ∈ X then there

exists a stratified neighborhood (U,ΣU ) of p in X such that the following hold.

(i) ΣU ≺ ΣX ∩ U .
(ii) There exists a Lipschitz strong deformation retract r : U × [0, 1] → U of

U to a union N ⊂ U of strata of ΣU with p ∈ N (and dimN < dimU)
satisfying the following properties

(a) r0(x) ∈ N and r1(x) = x where rt(x) = r(x, t) for t ∈ [0, 1].
(b) r|S×(0,1] is smooth and r(S × (0, 1]) ⊂ S for any stratum S ∈ ΣU .
(c) For any S ∈ ΣU there exists S′ ∈ ΣU such that r0(S) ⊂ S

′.
(d) dxrt|S(x)→ dxr0|S(x) as t→ 0, for any x ∈ S ∈ ΣU .

The proof is based on a technique developed in [10] and can be found in [9].
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5. De Rham Theorem There are many possible approaches to proving
a De Rham type theorem after having proved the Poincaré lemma. In [9] we give
an elementary approach using Whitney’s elementary [15] forms and basic linear
algebra. In this note we give a sheaf theoretic proof which is shorter. See [13]
for generalities on sheaf theory. Define Fk to be the sheaf associated with the
presheaf of L∞ k-forms. Clearly each Fk is a fine sheaf, and by Theorem 4.1 the
sequence

· · ·
d
← F j

d
← · · ·

d
← F1 d

← F0

is exact, where F0 is the sheaf of constant functions. Therefore, F• comprises a
fine resolution of the locally constant sheaf and hence its cohomology naturally
coincides with the singular cohomology of X.
Acknowledgment. We would like to thank Pierre Milman for raising the
question, helpful discussions and important comments.
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