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ABSTRACT. We prove certain probabilistic inequalities for long matrix
products generated by a pair of 2x 2 matrices. Our main tool is the so-called
Goldstein-Schlag avalanche principle.

RESUME. Nous prouvons certaines inégalités probabilistes concernant
les longs produits de matrices générés par une paire de matrices 2 x 2. Notre
objectif principal concerne le principe d’avalanche, énoncé par Goldstein et
Schlag.

1. Introduction. In this article we continue the study of a long matrix
product generated by a pair of 2 X 2 matrices based on the avalanche principle.
This principle has been established by M. Goldstein and W. Schlag [G-S]. In our
previous work (see [G-G]), we have described a quick algorithm which computes
an averaged joint spectral radius for a pair of 2x2 matrices satisfying an avalanche
condition, (see Theorem 1.1). The next step of our research relates to estimations
of some classical deviation probabilities associated with the long matrix products.

THEOREM 1.1 (Avalanche Principle [G-S, Proposition 2.2]).  Let A;,..., A,
be a sequence of unimodular 2 X 2 matrices. Suppose that
(i) minicjcn |4l = p>n,
(i) mecs <<t [log || A;1 ]| + log [ 4; | — log [| 4,414, ] < L 1og .
Then

n—1

n—1
n
log [|[Ap - Ad| + Y log | 4] = Y log 1441 45l| < o
=2

j=1

2. Deviation probabilities. Now we begin to study some probabilistic
aspects of the avalanche principle. We define the four following quantities:

1 = log |42 — log | A]. I = log | AB]| — log | B,
I3 = log || B?|| —log || B, ly = log || BA|| — log [|A],
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and their average by
b Hltlstly
S E—

For any word II,, = C), - -- Cy, C; € {A, B} it follows by the avalanche principle
that n=! log ||I1,,|| can be approximated by n=1(n1l; + nals +nslz +n4ly), where
n1, Na, ng, ng denote the appearance frequencies of the combinations

A? AB,B? BA

in the word II,, = C,, - - - C'1. Indeed, the avalanche principle implies that
n—1 n—1 n
log [ Cu - Cul + 3 Tog 51| = D log [y G| < e
j=2 j=1

On the other hand, one can write

n—1 n—1
nily + nols + nzls + ngly + X(Cn) = Z IOg HCj+1Cj|| — Z IOg ||CjHa
j=1 =2
where
log ||4| if C, = A,
(Cn) = e
log||B| if C, = B.
Therefore,

X(Cn)

c
|TL_1 log ||Hn|| — n_l(mll + nals + ngls + n4l4)| < ; +
0
Our next goal is to estimate the following classical deviation probabilities:
n )
P(‘nl - Z’ > M\/ﬁ), i=1,4.

Let us observe that by symmetry arguments it will be sufficient to compute only
two of these probabilities

P(‘nl - g‘ > M\/ﬁ) and P()n2 - g‘ > M\/ﬁ),
say.

LEMMA 2.1. Fork € N we have

k
| 25t

P(ny=k)=2"" m;ﬂ <mk 1> <n ;Lrizz 1)
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PROOF. Let A occur m > k + 1 times in the word II,, = C,,---C;.
It is clear that we have to count the number of outcomes in which A? (as
a combination) occurs in the word exactly II,k times. All such events can
be described by the following schemes: B% AB% ... AB%»-1 AB%  where k
members of di,...,d,,—1 are zeros (which means the appearance of k couples
AA = A?), and the rest of them, including dy and d,,, are positive integer num-
bers. Obviously dy,d1, ... ,dm—_1,d, satisfy the following Diophantine equation
do+ -+ +dn = n—m. We need to find the number of integer solutions of
this equation under the above-mentioned constraints. Choose & members from
dy,...,dn_1 to be zeros. By using a standard change of variables, one can re-
duce the equation dy + - - - + d,, = n — m under the following (above-mentioned)
constraints:

do,dpm >0, di=dy=-=d, =0, djyy,....dp_1>1,
(here d} € {d1,...,dm—1} foralli=1,...,m — 1) to a new standard equation

T4t Tmogpr = —m)—(m—k—-1)=n-2m+k+1,

where x1,...,Zm g1 > 0. (Indeed, put x1 = do, x2 = dj | —1,..., 2 =

1y Tm—k+1 = dm.) Summarizing: the number of integer non-negative solu-

tions of the last equation is
m—1\/n—-—m+1
k m—k )

m—1\/n—-—m+1
Pni=k|A ti =2"" .
(nq | A occurs m times ) ( k: )( ok )

Thus,

. Ln+l2€+1

Finally, summing these probabilities over all m =k + 1, .. | we obtain

Ln+720+1J
n m—1\/n—-—m+1
Peu=r =2 S ("),
m>;k+1

as claimed. O

LEMMA 2.2. For k € N we have

_nfn+1
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PROOF. Arguing in just the same way as for Lemma 2.1, we count the
number of outcomes in which AB occurs in the word II, exactly k times. The
corresponding scheme is

BdoAqoBd1Aq1 _,_BdkAqk7

where all of dy,...,dx_1 and qq,...,qr_1 are strictly positive integer numbers
(which implies the appearance of k couples AB), dy and ¢, are non-negative inte-
ger numbers. Note that dg,...,dg,qo, ..., qr_1 satisfy the following Diophantine

equation:
k k
S g =
i=0 j=0

Redefine the variables sg = do, s; = d; =1, 0 <4 < k=1, sppj41 = g5 — 1
for 0 < j < k and sgpy1 = qx. Now the previous Diophantine equation can
be reduced to Zfigl s; = n — 2k, where s; > 0. Hence, the number of non-
negative integer solutions of this equation is (27;:;11) This yields the statement
of Lemma 2.2. 0

Now we prove that the deviation probabilities computed above are exponen-

tially small in M.

LEMMA 2.3.
P( n; — g’ > M\/ﬁ) < Ke ™M =14,
where K is an absolute constant.
PROOF. The probabilities (|n; — 4| > M+/n) are well known from the

random allocation methods and may be estimated by using various classical
inequalities. It seems that the simplest way to estimate P(|n; — 3| > M+/n) is
the so-called Chernoff Bounds (see [C] or [A-S])

P(X < Bpn) < e—(l—Bz)nz)/Q7

where X ~ B(n,p), 8 < 1. In particular, for p = 0.5 we have
P(X < Bn/2) < e~ (1=Fn/4,

Thus,

pl(ra= 51> 3v3) = (5> a0v7)
(i) TGl

k<% —-M+/n k>%4+My/n
n+1 n+1
2" 22—
> R (")

m<2E oM /n m>2t4oM/n
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(by the binomial symmetry)

=y m <—+2M\f2 ”+1<n+1>

m

1
= P(X < % +2M\F) < Ke M*VntT,

To estimate the equal probabilities
P(‘nl — %‘ > M\/ﬁ) and P(‘?’lg - %‘ > M\/ﬁ)
we note that

rL+k+l
L

TR RS S N (oo Caiol

E>24+My/n m>k+1

|2
n—m+1
e 2o ()0
k<2 —My/m m>k+1 m—k

Straightforward calculations using Stlrhng s approximation lead to the claimed
estimation P(|ny — 2| > My/n) < Ke M. O

Now we can formulate our main result.

THEOREM 2.4. LetIl,, = C,,Cyp_1---Cq be a random word such that C; €
{A,B}, i=1,n. Then

1 M
P(‘flog ITL, || ffy‘ > —) < Ke*(M/L){Z,
n Vn

where K is an absolute constant and L = maxj<;<al;.

ProOOF. For a suitable absolute constant o« > 0 we have

) < P(‘nlll + nals 4+ ngls + ngly
n

1 M
P ‘71 | — ‘ 2
(nogll I=>7

—7‘>a

7)
= P(\nlh + nals + ngls + ngly — n’y| > CYM\/E)

(s (s (o
+ (n4 — 2)14‘ > aM\/ﬁ>

<P (4 max|n

i=1,4

-—f‘ L>clf) < Ke~(@M/L)*

O
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