
C. R. Math. Rep. Acad. Sci. Canada Vol. 32 (1) 2010, pp. 13–18

THE AVALANCHE PRINCIPLE AND SOME DEVIATION

PROBABILITIES

D. GOLDSTEIN AND I. GOLDSTEIN

Presented by George Elliott, FRSC

Abstract. We prove certain probabilistic inequalities for long matrix
products generated by a pair of 2×2 matrices. Our main tool is the so-called
Goldstein-Schlag avalanche principle.

Résumé. Nous prouvons certaines inégalités probabilistes concernant
les longs produits de matrices générés par une paire de matrices 2×2. Notre
objectif principal concerne le principe d’avalanche, énoncé par Goldstein et
Schlag.

1. Introduction. In this article we continue the study of a long matrix
product generated by a pair of 2× 2 matrices based on the avalanche principle.

This principle has been established by M. Goldstein and W. Schlag [G-S]. In our
previous work (see [G-G]), we have described a quick algorithm which computes
an averaged joint spectral radius for a pair of 2×2 matrices satisfying an avalanche
condition, (see Theorem 1.1). The next step of our research relates to estimations
of some classical deviation probabilities associated with the long matrix products.

Theorem 1.1 (Avalanche Principle [G-S, Proposition 2.2]). Let A1, . . . , An

be a sequence of unimodular 2× 2 matrices. Suppose that

(i) min1≤j≤n ‖Aj‖ ≥ µ > n,
(ii) max1≤j≤n−1[log ‖Aj+1‖+ log ‖Aj‖ − log ‖Aj+1Aj‖] < 1

2 log µ.

Then
∣

∣

∣
log ‖An · · ·A1‖+

n−1
∑

j=2

log ‖Aj‖ −
n−1
∑

j=1

log ‖Aj+1Aj‖
∣

∣

∣
< c

n

µ
.

2. Deviation probabilities. Now we begin to study some probabilistic
aspects of the avalanche principle. We define the four following quantities:

l1 = log ‖A2‖ − log ‖A‖, l2 = log ‖AB‖ − log ‖B‖,

l3 = log ‖B2‖ − log ‖B‖, l4 = log ‖BA‖ − log ‖A‖,
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and their average by

γ =
l1 + l2 + l3 + l4

4
.

For any word Πn = Cn · · ·C1, Ci ∈ {A,B} it follows by the avalanche principle
that n−1 log ‖Πn‖ can be approximated by n−1(n1l1+n2l2+n3l3+n4l4), where
n1, n2, n3, n4 denote the appearance frequencies of the combinations

A2, AB,B2, BA

in the word Πn = Cn · · ·C1. Indeed, the avalanche principle implies that

∣

∣

∣
log ‖Cn . . . C1‖+

n−1
∑

j=2

log ‖Cj‖ −
n−1
∑

j=1

log ‖Cj+1Cj‖
∣

∣

∣
< c

n

µ0
.

On the other hand, one can write

n1l1 + n2l2 + n3l3 + n4l4 + χ(Cn) =
n−1
∑

j=1

log ‖Cj+1Cj‖ −
n−1
∑

j=2

log ‖Cj‖,

where

χ(Cn) =

{

log ‖A‖ if Cn = A,

log ‖B‖ if Cn = B.

Therefore,

∣

∣n−1 log ‖Πn‖ − n−1(n1l1 + n2l2 + n3l3 + n4l4)
∣

∣ <
c

µ0
+

χ(Cn)

n
.

Our next goal is to estimate the following classical deviation probabilities:

P
(∣

∣

∣
ni −

n

4

∣

∣

∣
> M

√
n
)

, i = 1, 4.

Let us observe that by symmetry arguments it will be sufficient to compute only
two of these probabilities

P
(
∣

∣

∣
n1 −

n

4

∣

∣

∣
> M

√
n
)

and P
(
∣

∣

∣
n2 −

n

4

∣

∣

∣
> M

√
n
)

,

say.

Lemma 2.1. For k ∈ N we have

P (n1 = k) = 2−n

⌊n+k+1

2
⌋

∑

m≥k+1

(

m− 1

k

)(

n−m+ 1

m− k

)
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Proof. Let A occur m ≥ k + 1 times in the word Πn = Cn · · ·C1.
It is clear that we have to count the number of outcomes in which A2 (as
a combination) occurs in the word exactly Πnk times. All such events can
be described by the following schemes: Bd0ABd1 · · ·ABdm−1ABdm , where k
members of d1, . . . , dm−1 are zeros (which means the appearance of k couples
AA = A2), and the rest of them, including d0 and dm, are positive integer num-
bers. Obviously d0, d1, . . . , dm−1, dm satisfy the following Diophantine equation
d0 + · · · + dm = n − m. We need to find the number of integer solutions of
this equation under the above-mentioned constraints. Choose k members from
d1, . . . , dm−1 to be zeros. By using a standard change of variables, one can re-
duce the equation d0 + · · ·+ dm = n−m under the following (above-mentioned)
constraints:

d0, dm ≥ 0, d′1 = d′2 = · · · = d′k = 0, d′k+1, . . . , d
′
m−1 ≥ 1,

(here d′i ∈ {d1, . . . , dm−1} for all i = 1, . . . ,m− 1) to a new standard equation

x1 + · · ·+ xm−k+1 = (n−m)− (m− k − 1) = n− 2m+ k + 1,

where x1, . . . , xm−k+1 ≥ 0. (Indeed, put x1 = d0, x2 = d′k+1 − 1, . . . , xm−k =
d′m−1, xm−k+1 = dm.) Summarizing: the number of integer non-negative solu-
tions of the last equation is

(

m− 1

k

)(

n−m+ 1

m− k

)

.

Thus,

P (n1 = k | A occurs m times ) = 2−n

(

m− 1

k

)(

n−m+ 1

m− k

)

.

Finally, summing these probabilities over all m = k + 1, . . . , ⌊n+k+1
2 ⌋ we obtain

P (n1 = k) = 2−n

⌊n+k+1

2
⌋

∑

m≥;k+1

(

m− 1

k

)(

n−m+ 1

m− k

)

,

as claimed. �

Lemma 2.2. For k ∈ N we have

P (n2 = k) = 2−n

(

n+ 1

2k + 1

)

.



16 D. GOLDSTEIN AND I. GOLDSTEIN

Proof. Arguing in just the same way as for Lemma 2.1, we count the
number of outcomes in which AB occurs in the word Πn exactly k times. The
corresponding scheme is

Bd0Aq0Bd1Aq1 · · ·BdkAqk ,

where all of d1, . . . , dk−1 and q0, . . . , qk−1 are strictly positive integer numbers
(which implies the appearance of k couples AB), d0 and qk are non-negative inte-
ger numbers. Note that d0, . . . , dk, q0, . . . , qk−1 satisfy the following Diophantine
equation:

k
∑

i=0

di +

k
∑

j=0

qj = n.

Redefine the variables s0 = d0, si = di − 1, 0 ≤ i ≤ k − 1, sk+j+1 = qj − 1
for 0 ≤ j ≤ k and s2k+1 = qk. Now the previous Diophantine equation can

be reduced to
∑2k+1

i=0 si = n − 2k, where si ≥ 0. Hence, the number of non-
negative integer solutions of this equation is

(

n+1
2k+1

)

. This yields the statement
of Lemma 2.2. �

Now we prove that the deviation probabilities computed above are exponen-
tially small in M .

Lemma 2.3.

P
(∣

∣

∣
ni −

n

4

∣

∣

∣
> M

√
n
)

< Ke−M2

, i = 1, 4,

where K is an absolute constant.

Proof. The probabilities (|ni − n
4 | > M

√
n) are well known from the

random allocation methods and may be estimated by using various classical
inequalities. It seems that the simplest way to estimate P (|n1 − n

4 | > M
√
n) is

the so-called Chernoff Bounds (see [C] or [A-S])

P (X ≤ βpn) ≤ e−(1−β2)np/2,

where X ∼ B(n, p), β < 1. In particular, for p = 0.5 we have

P (X ≤ βn/2) ≤ e−(1−β2)n/4.

Thus,

P
(∣

∣

∣
n2 −

n

4

∣

∣

∣
> M

√
n
)

= P
(∣

∣

∣
n4 −

n

4

∣

∣

∣
> M

√
n
)

=
∑

k<n

4
−M

√
n

2−n

(

n+ 1

2k + 1

)

+
∑

k>n

4
+M

√
n

2−n

(

n+ 1

2k + 1

)

=
∑

m<n+1

4
−2M

√
n

2−n

(

n+ 1

m

)

+
∑

m>n+1

4
+2M

√
n

2−n

(

n+ 1

m

)
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(by the binomial symmetry)

=
∑

m <
n+ 1

4
+ 2M

√
n2−n+1

(

n+ 1

m

)

= P
(

X ≤ n+ 1

4
+ 2M

√
n
)

≤ Ke−M2
√
n+1.

To estimate the equal probabilities

P
(∣

∣

∣
n1 −

n

4

∣

∣

∣
> M

√
n
)

and P
(∣

∣

∣
n3 −

n

4

∣

∣

∣
> M

√
n
)

we note that

P
(∣

∣

∣
n1 −

n

4

∣

∣

∣
> M

√
n
)

= 2−n
∑

k>n

4
+M

√
n

⌊n+k+1

2
⌋

∑

m≥k+1

(

m− 1

k

)(

n−m+ 1

m− k

)

+ 2−n
∑

k<n

4
−M

√
n

⌊n+k+1

2
⌋

∑

m≥k+1

(

m− 1

k

)(

n−m+ 1

m− k

)

.

Straightforward calculations using Stirling’s approximation lead to the claimed
estimation P (|n1 − n

4 | > M
√
n) < Ke−M2

. �

Now we can formulate our main result.

Theorem 2.4. Let Πn = CnCn−1 · · ·C1 be a random word such that Ci ∈
{A,B}, i = 1, n. Then

P
(
∣

∣

∣

1

n
log ‖Πn‖ − γ

∣

∣

∣
>

M√
n

)

< Ke−(M/L)2 ,

where K is an absolute constant and L = max1≤i≤4 li.

Proof. For a suitable absolute constant α > 0 we have

P
(∣

∣

∣

1

n
log ‖Πn‖ − γ

∣

∣

∣
>

M√
n

)

≤ P
(∣

∣

∣

n1l1 + n2l2 + n3l3 + n4l4
n

− γ
∣

∣

∣
> α

M√
n

)

= P (|n1l1 + n2l2 + n3l3 + n4l4 − nγ| > αM
√
n)

= P

(

∣

∣

∣

(

n1 −
n

4

)

l1 +
(

n2 −
n

4

)

l2 +
(

n3 −
n

4

)

l3

+
(

n4 −
n

4

)

l4

∣

∣

∣
> αM

√
n

)

≤ P
(

4 max
i=1,4

∣

∣

∣
ni −

n

4

∣

∣

∣
· L > c1

√
n
)

< Ke−(αM/L)2 .

�
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