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ABSTRACT. We study the algebras of bounded holomorphic functions
on the unit disk whose boundary values, having, in a sense, the weak-
est possible discontinuities, belong to the algebra of semi-almost periodic
functions on the unit circle. The latter algebra contains as a special case
an algebra introduced by Sarason in connection with some problems in
the theory of Toeplitz operators. We show that such algebras have the
Grothendieck approximation property, prove the corona theorem for them
and formulate some results on the structure of their maximal ideal spaces.
Also, we extend the notion of the Bohr—Fourier spectrum to holomorphic
semi-almost periodic functions and prove that under certain assumptions
on their spectra the corresponding algebras are projective free and their
maximal ideal spaces have trivial Cech cohomology groups.

RESUME.  On étudie les algebres des fonctions holomorphes bornées
sur le disque unité dont les valeurs au bord ayant, dans us certain sens, des
discontinuités les plus faibles possible, appartiennent & ’algebre de fonc-
tions semi-presque périodique sur le circle unité. Cette derniére contient,
en particulier, une algebre introduite par Sarason en relation avec cer-
tains problémes de la théorie des opérateurs de Toeplitz. On montre que
ces algebres ont la propriéte d’approximation de Grothendieck; on prouve
le theoréme corona pour celles-ci et on formule quelques résultats sur la
structure de leurs espaces idéaux maximaux. On étend aussi la notion
du spectre de Bohr-Fourier a des fonctions holomorphiques semi-presques
périodiques et on prouve que sous certaines hypothéses sur leur spectres,
tout module projectif des algébres correspondants est libre et leurs espaces
idéaux maximaux ont des cohomologies triviales de Cech.

1. Introduction In this paper we study Banach algebras of holomorphic
semi-almost periodic functions, i.e., bounded holomorphic functions on the unit
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disk D C C whose boundary values belong to the algebra SAP(ID) C L*°(dD)
of semi-almost periodic functions on the unit circle 0D. The latter algebra con-
tains as a special case an algebra introduced by Sarason [15] in connection with
some problems in the theory of Toeplitz operators. Our primary interest in
holomorphic semi-almost periodic functions is motivated by the problem of de-
scription of the weakest possible boundary discontinuities of functions in H> (D),
the Hardy space of bounded holomorphic functions on D. (Recall that a func-
tion f € H°°(D) has radial limits almost everywhere on 0D, the limit function
flop € L>(0D), and f can be recovered from f|sp by means of the Cauchy
integral formula.) In the most general form this problem is as follows.

Given a continuous function ®: C — C to describe the minimal Banach
subalgebra HZ° (D) C H*° (D) containing all invertible elements f € H*(D)
such that ®(f)|sp is piecewise Lipschitz having finitely many first-kind
discontinuities.

Clearly, each H (D) contains the disk-algebra A(D) (i.e., the algebra of holo-
morphic functions continuous up to the boundary). Moreover, if ®(z) = z, Re(z),
or Im(z), then the Lindelof theorem (see e.g., [9]) implies that H3° (D) = A(D).
In contrast, if ® is constant on a closed simple curve which does not encompass
0 € C, then H (D) = H*(D). (This result is obtained by consequent applica-
tions of the Carathéodory conformal mapping theorem, the Mergelyan theorem,
and the Marshall theorem; see [9].) In [4] we studied the case of ®(z) = |z|
and showed that H3° (D) coincides with the algebra of holomorphic semi-almost
periodic functions SAP(OD) N H*°(D). In the present paper we continue the
investigation. Despite the fact that our results concern the particular choice of
®(z) = |z|, the methods developed here and in [4] can be applied further to a
more general class of functions ®.

Let bD be the maximal ideal space of the algebra SAP(0D) N H*> (D), i.e., the
set of all nonzero homomorphisms SAP(0D) N H>*(D) — C equipped with the
Gelfand topology. The disk D is naturally embedded into dD. In [4] we proved
that D is dense in b (the so-called corona theorem for SAP(0D) N H*(D)).
We also described the topological structure of bD. In the present paper we re-
fine and extend some of these results. In particular, we introduce Bohr—Fourier
coefficients and spectra of functions from SAP(dD), describe Cech cohomol-
ogy groups of b, and establish projective freeness of certain subalgebras of
SAP(0D) N H*(D). Recall that a commutative ring R with identity is called
projective free if every finitely generated projective R-module is free. Equiva-
lently, R is projective free if and only if every square idempotent matrix F' with
entries in R (i.e., such that F? = F) is conjugate over R to a matrix of the form

Iy O

0 0
where I}, stands for the k x k identity matrix. Every field F is trivially projective-
free. Quillen and Suslin proved that if R is projective free, then the rings of
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polynomials R[z] and formal power series R[[z]] over R are projective free as
well (see [12]). Grauert proved that the ring O(D™) of holomorphic functions on
the unit polydisk D™ is projective free [10]. It was shown in [6] that the triviality
of any complex vector bundle of finite rank over the connected maximal ideal
space of a unital semi-simple commutative complex Banach algebra is sufficient
for its projective freeness. We employ this result to show that the subalgebras
of SAP(OD) N H*°(D) whose elements have their spectra in non-negative or
non-positive semi-groups are projective free. Note that if a unital semi-simple
commutative complex Banach algebra A is projective free, then it is Hermite, i.e.,
every finitely generated stably free A-module is free. Equivalently, A is Hermite
if and only if any k x n matrix, k < n, with entries in A having rank k at each
point of the maximal ideal space of A can be extended to an invertible n x n
matrix with entries in A, see [7]. (Here the values of elements of A at points of
the maximal ideal space are defined by means of the Gelfand transform.)

Finally, we prove that SAP(0D) N H*>(D) has the approzimation property,
i.e., each compact linear operator on SAP(9D) N H>°(D) can be approximated
in operator norm by linear operators of finite rank. (This result strengthens
the approximation theorem of [4].) Although it is strongly believed that the
class of spaces with the approximation property includes practically all spaces
which appear naturally in analysis, it is not known yet even for the space H> (D)
(see [2] for some results in this direction). The first example of a space which
fails to have the approximation property was constructed by Enflo [8]. Since
Enflo’s work, several other examples of such spaces were constructed (for the
references see [14]). Many problems of Banach space theory admit especially
simple solutions if one of the spaces under consideration has the approximation
property. One of such problems is the problem of determination whether given
two Banach algebras A C C'(X), B C C(Y) (X and Y are compact Hausdorff
spaces) their slice algebra

SA,B)={feC(XXY): f(h,y)e Aforally €Y, f(z,-) € Bforallz € X}

coincides with A ® B, the closure in C'(X X Y') of the symmetric tensor product
of A and B. For instance, this is true if either A or B have the approximation
property. The latter is an immediate consequence of Grothendieck theorem (see
Theorem 3.4).

The paper is organized as follows. Section 2 is devoted to the algebra of semi-
almost periodic functions SAP(JD). In Section 3 we formulate our main results
on the algebra of holomorphic semi-almost periodic functions SAP(0D)NH > (D).
The detailed proofs of all statements are contained in [5].

2. Semi-almost periodic functions We first recall the notion of a Bohr
almost periodic function on R. In what follows, by Cj(R) we denote the algebra
of bounded continuous functions on R endowed with sup-norm.

DEFINITION 2.1 ([1]). A function f € Cy(R) is said to be almost periodic if
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the family of its translations {S; f}rer, Srf(z) := f(x + 1), x € R, is relatively
compact in Cy(R).

Let AP(R) be the Banach algebra of almost periodic functions endowed with
sup-norm. The basic characteristics of an almost periodic function f € AP(R)
are its Bohr—Fourier coefficients a)(f) and the spectrum spec(f), defined in
terms of the mean value

. 1
M(f) = Tl—lg-loo ﬁ

/_z f(z)dz € C.

Specifically,
ax(f) :== M(feﬂ')‘””), A€ R.

Then a)(f) # 0 for at most countably many values of A; these values form the
spectrum spec(f) of f. In particular, if f =372, ¢ (¢; # 0, Y2, |a| < 00),
then spec(f) = {A1,A2,... }.

One of the main results of the theory of almost periodic functions states that
each function f € AP(R) can be uniformly approximated by functions of the
form ", ;e with \; € spec(f).

Let I' € R be a unital additive semi-group (i.e., 0 € T'). It follows easily
from the above approximation result that the space APr(R) of almost periodic
functions with spectra in I' forms a unital Banach subalgebra of AP(R).

Next, we recall the definition of a semi-almost periodic function on JD in-
troduced in [4]. In what follows, we consider 0D with the counterclockwise
orientation. For tg € [0,27) let

vy (s) = {eitoFh) . 0 <t <s<2r}, ke{-1,1}

be two open arcs having €'’ as the right and the left endpoints (with respect to
the orientation), respectively.

DEFINITION 2.2 ([4]). A function f € L>°(9D) is called semi-almost periodic
on OD if for any ¢y € [0,27) and any £ > 0 there exist a number s = s(tg,¢) €
(0,7) and functions fi: 7 (s) = C, k € {—1,1}, such that functions

s fr(eTorhe) oo <t <0, ke {-1,1},
are restrictions of some almost periodic functions from AP(R), and

sup |f(z) — fi(z)| <e, ke{-1,1}.

z€vf (s)
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By SAP(0D) we denote the Banach algebra of semi-almost periodic functions
on 0D endowed with sup-norm. It is easy to see that the set of points of dis-
continuity of a function in SAP(9D) is at most countable. For S being a closed
subset of 0D we denote by SAP(S) the Banach algebra of semi-almost periodic
functions on 0D that are continuous on D \ S. (Note that Sarason’s algebra
introduced in [15] is isomorphic to SAP({20}), 20 € ID.)

EXAMPLE 2.3 ([4]). A function g defined on R U (R + i7) is said to belong
to the space AP(RU (R + ¢7)) if the functions g(z) and g(z +i7), € R, belong
to AP(R). The space AP(RU (R + im)) is a function algebra (with respect to
sup-norm).

Given sy € dD consider the map ¢4, : D\ {—so} — R, @4, (s) := 2iisl;‘q),
and define a linear isometric embedding Ls,: AP(RU (R +im)) — L*>°(9D) by
the formula

(Lsog)(s) := (g © Log ops, ) (s),

where Log(z) := In|z| +i Arg(z), z € C\R_, and Arg: C\R_ — (—m, ) stands
for the principal branch of the multi-function arg. Then the range of L, is a
subspace of SAP({—sg, so}) and the graph of each L g (for a real-valued g) has
the following form

PROPOSITION 2.4.  For every so € OD there exists a homomorphism of Ba-
nach algebras Es, : SAP(OD) — AP(RU (R +im)) of norm 1 such that for each
f € SAP(OD) the function f — Ls,(Es, f) € SAP(ID) is continuous and equal to
0 at so. Moreover, any bounded linear operator SAP(0D) — AP(R U (R + im))
satisfying this property coincides with Es,.

The functions f_1 s, (z) := (Es, f)(z) and f1 5, (z) := (Es, f)(z +i7), € R,
are used to define the left (k = —1) and the right (k = 1) mean values MF (f)
of a function f € SAP(JD) over sg (cf. Remark 2.8 below). Precisely, we put

M (f) = M(frso)-

PROPOSITION 2.5. The mean value MS]’“0 is a continuous linear functional
SAP(0D) — C.
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Similarly, we define the left (k = —1) and the right (k = 1) Bohr—Fourier
coefficients of f over s by the formulas a%(f, so) := ax(fk.s,)- Those values of
A for which a%(f, so) # 0 form the left (k = —1) and the right (k = 1) spectrum
speck (f) of f over so. Moreover, speck (f) is at most countable.

Let ¥ : Sx{—1,1} — 2F be a set-valued map which associates with each s € S,
k € {—1,1} a unital semi-group 3(s, k) C R. By SAP (S) C SAP(S) we denote
the Banach algebra of semi-almost periodic functions f with speck(f) C (s, k)
forallse S, ke {-1,1}.

THEOREM 2.6.

(i) A function f € SAP 5(S) if and only if for each s € S and k € {—1,1} the al-
most periodic functions fy, in Definition 2.2 can be chosen from AP s 1y (R).

(ii) The “total spectrum” Uscop, p—+1 speck(f) of a function f € SAP(OD) is at
most countable.

For a unital semi-group I' C R by br(R) we denote the maximal ideal space
of algebra APr(R). (E.g., for I' = R the space bR := bg(R), commonly called
the Bohr compactification of R, is a compact abelian topological group viewed
as the inverse limit of compact finite-dimensional tori. The group R admits a
canonical embedding into bR as a dense subgroup.)

Let b5,(0D) be the maximal ideal space of algebra SAP 5(S) and 75 : b3,(0D) —
OD be the mapping transpose to the embedding C'(9D) < SAP x(.5).

THEOREM 2.7.

(i) The map transpose to the restriction of homomorphism Es, to SAPx(S)
determines an embedding h$, : bss —1)(R) U bsys 1) (R) < b5 (D) whose
image coincides with (r$)~1(s).

(ii) The restriction rg : b (OD) \ (r$)~1(S) — 0D\ S is a homeomorphism.
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(For an m point set S and each X(s,k), s € S, k € {—1,1}, being a group, the
mazimal ideal space b5 (OD) is the union of OD\'S and 2m Bohr compactifications
by (s,k)(R) that can be viewed as (finite or infinite dimensional) tori.)

REMARK 2.8. There is an equivalent way to define the mean value of a
semi-almost periodic function. Specifically, for a semi-almost periodic function
f € SAP(OD), k € {—1,1}, and a point sg € S we define the left (k = —1) and
the right (k = 1) mean values of f over sy by

1 bn ot
k NI . pike
Mg, (f) = lim — /an f (50 e ) dt,

where {a,}, {b,} are arbitrary sequences converging to —oo such that lim,
(by, — apn) = +00.
The Bohr—Fourier coefficients of f over sg can be then defined by the formulas

—iXlogh
aX(f,s0) = ML (fe=* %),
where so = e’ and

logtg(ei(t“kt)) =1Int, 0<t<2m, ke{-1,1}.

3. Holomorphic semi-almost periodic functions. Let C,(T) denote
the space of bounded continuous functions on the strip 7' := {z € C : Im(z) €
[0, 7]} endowed with sup-norm.

DEFINITION 3.1 ([1]). A function f € Cy(T) is called holomorphic almost
periodic on the strip T if it is holomorphic in the interior of 7" and the family of
translates {Sy f tzer, Sz f(2) = f(z + x), is relatively compact in Cy(T).

We denote by APH(T') the Banach algebra of holomorphic almost periodic
functions endowed with sup-norms. The mean value of a function f € APH(T)
is defined by the formula

T
M(f) = TETMLT[Tf(x+iy)d$EC

(M(f) does not depend on y, see [1]). Further, the Bohr—Fourier coefficients
of f are defined by ax(f) := M(fe=*?),\ € R. Then ay(f) # 0 for at most
countably many values of A\ and these values form the spectrum spec(f) of f.
For instance, if f = Y2, ™= (¢ # 0, Y2, ||l < o0), then spec(f) =
{A1,A2,...}. Similarly to the case of functions from AP(R) each f € APH(T)
can be uniformly approximated by functions of the form ", e with \; €

spec(f).
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Let ' C R be a unital additive semi-group. The space APHp(T') of holomor-
phic almost periodic functions with spectra in I' forms a unital Banach algebra.

The functions in SAPx(S) N H*(D) are called holomorphic semi-almost pe-
riodic.

EXAMPLE 3.2 ([4]). Let f € APH(T), so € O0D. Consider the map

— _ 2i(sp — 2)
G5 1D\ {=s0} = Hy, ¢s(2):= Ttz

Here HI* is the upper half-plane. Then ¢z, maps D conformally onto H and
0D\ {—sp} diffeomorphically onto R (the boundary of H ) so that s, (s9) = 0.
Let Ty be the interior of the strip 7. Consider the conformal map

Log: Hy — Ty, z — Log(z) :=In|z| + ¢ Arg(z),

where Arg: C\ R_ — (—m,7) is the principal branch of the multi-function arg.
The function Log is extended to a homeomorphism of H, \ {0} onto T. Let
g € APH(T'). Then the function

(Lso9)(2) := (g o Logops,)(2), 2z €D,
belongs to SAP({—s0,s0}) N H>*(D).

PROPOSITION 3.3.  Suppose that f € SAP(S) is a holomorphic semi-almost
periodic function. Then specg*(f) = specl(f) =: spec,(f) and, moreover,

ay'(f,s) = e’a)(f,s) for each X € spec,(f).

(Recall that the choice of the upper indices £1 is determined by the orientation
of 9D.)
Proposition 3.3 implies that SAPx(S)NH> (D) = SAPyx/ (S)NH> (D), where

Y (s, k) :=X(s,—1)NX(s,1) for k=—1,1.
In what follows we assume that
Y(s,—1) = X(s,1) =: X(s).

3.1.  Analytical structure of SAPx(S) N H*(D) Recall that a Banach space B
is said to have the approrimation property if for every compact set K C B and
every € > 0 there is an operator T': B — B of finite rank so that ||Tz —z||p < ¢
for every z € K.

Let A C C(X) be a closed subspace, B be a Banach space and Ap C
Cp(X) := C(X, B) be the Banach space of all continuous B-valued functions
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f such that ¢(f) € A for any ¢ € B*. By A ® B we denote completion of
symmetric tensor product of A and B with respect to norm

H;ak ® ka = SukaZ_l ak(x)kaB with ay € A, b, € B.

rzeX

THEOREM 3.4 ([11]).  The following statements are equivalent:

(i) A has the approximation property;
(il) A® B = Ap for every Banach space B.

THEOREM 3.5. SAPx(S) N H>*(D) has the approximation property.

Our proof of Theorem 3.5 is based on the equivalence established in Theo-
rem 3.4 and on an approximation result for Banach-valued analogues of algebra
SAP(S)N H>(D) formulated below. Specifically, for a Banach space B we define

SAPE(S) := SAPx(S) ® B.

Using the Poisson integral formula we can extend each function from SAPE(S)
to a bounded B-valued harmonic function on D having the same sup-norm. We
identify SAPS (S) with its harmonic extension. Let H3 (D) be the Banach space
of bounded B-valued holomorphic functions on D equipped with sup-norm. By
(SAPx(S) N H*(D))p we denote the Banach space of all continuous B-valued
functions f on the maximal ideal space b° (D) of algebra SAP(S) N H> (D) such
that ¢(f) € SAPx(S) N H>*(D) for any ¢ € B*. In what follows we naturally
identify I with a subset of b%(DD).

PROPOSITION 3.6.  Let f € (SAPx(S)NH>™(D))p. Then flp € SAPE(S)N
H¥ (D).

Let Ag be the closed subalgebra of H>°(D) generated by the disk-algebra
A(D) and the functions of the form ge*, where Re(h)|sp is the characteristic
function of the closed arc going in the counterclockwise direction from the initial
point at s to the endpoint at —s such that s € S, A\/m € X(s) and g(z) := z + s,
z € D (in particular, ge*" has discontinuity at s only).

The next result combined with Proposition 3.6 and Theorem 3.4 implies The-
orem 3.5.

THEOREM 3.7. SAPE(S)NHF(D) = A% ® B.
As a corollary we obtain

COROLLARY 3.8. SAPx(S)N H®(D) = A3,
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We conclude this section with a result on the tangential behavior of functions
from SAP(0D) N H>* (D).

THEOREM 3.9.  Let {zp}tnen C D and {sp}nen C 90D converge to a point
so € OD. Assume that

it |Zn - Sn| o
m — =
n— 00 |30 — sn|

0.

Then for every f € SAP(OD) N H>®(D), either the limits lim, o f(2zn) and
lim, 00 f(sn) do not exist or exist simultaneously and in the latter case they are
equal.

REMARK 3.10. This result implies that the extension (by means of the
Gelfand transform) of each f € SAP(0D) N H*(D) to the maximal ideal space
of H* (D) is constant on a nontrivial Gleason part containing a limit point of a
sequence in D converging tangentially to 9D (we refer to [9] for the corresponding
definitions).

3.2. Topological structure of the mazimal ideal space of SAPx(S)NH>(D) Let
b3 (D) denote the maximal ideal space of SAPx(S)N H>(D) and a: b3(D) — D
be the continuous surjective map transpose to the embedding

A(D) < SAP(S) N H® (D).

(Recall that the maximal ideal space of the disk-algebra A(ID) is homeomorphic
to D.)
The following result is an immediate consequence of Corollary 3.8.

THEOREM 3.11.  SAPx(S)N H>(D) is generated by algebras SAPyx . (F)N
H>*(D) for all possible finite subsets F C S.

Here Y| F stands for the restriction of the set-valued map ¥ to F.
The inclusion

SAPE‘F1 (Fl)ﬂHOO(D) CSAPE|F2(F2)OHOO(]D)) if F1 C Fy

. . : . Fy. P2 Fy
determines a continuous map of maximal ideal spaces wr.” : ble2 (D) — bz‘F1 (D).

The family {ngF(D); Wlpcs;#F<oo forms the inverse limiting system. From
Theorem 3.11 we obtain the following.

THEOREM 3.12.  b3(D) is the inverse limit of {bg‘F(]D)) s WlPCS: #F<oo-

In what follows, by br(T) we denote the maximal ideal space of algebra
APHp(T) and by tr: T — bp(T') the continuous map determined by evalua-
tions at points of T.
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THEOREM 3.13.

(i) For each s € S there exists an embedding i5,: bsys)(T) < b5 (D) whose image
is (a5) ~1(s) such that the pullback (i%)* maps SAPx(S)NH> (D) surjectively
onto APHyx,5)(T'). Moreover, the composition of the restriction map to R U
(R +im) and (i$; 0 vs(s))" coincides with the restriction of homomorphism
E; to SAPx(S) N H>(D) (see Proposition 2.4).

(ii) The restriction as;: bsi(D) \ (as)~1(S) — D\ S is a homeomorphism.

Since SAPyx(S) N H* (D) separates the points on D, the evaluation at points of
D determines a natural embedding ¢: D < b3 (D).

One has the following commutative diagram of maximal ideal spaces consid-
ered in the present paper, where the “dashed” arrows stand for embeddings in
the case X(s,—1) = X(s,1) are groups for all s € S, and for continuous maps
otherwise.

Usi(s)

T — by (T) < — =2 bgs,—1)(R) Ubss,1)(R)

D 2l)

THEOREM 3.14 (Corona Theorem). (D) is dense (in the Gelfand topology)
in b$.(D) if and only if each X(s), s € S, is a group.

Let Kg be the Silov boundary of algebra SAPx(S) N H*(D), that is, the
minimal closed subset of b5 (ID) such that for every f € SAPx(S) N H*>(D)

sup|f(2)] = max |f()],

z€D pEKS
where f is assumed to be extended to b%(ID) by means of the Gelfand transform.
For a non-trivial semigroup I' C R by clp(R + i7) and clp(R) we denote closures
of tp(R+ im) and ¢r(R) in bp(T"). One can easily show that these closures are
homeomorphic to bs(R), where [ is the minimal subgroup of R containing I.

THEOREM 3.15.

KS = ( U % (clss) (R) U el (R + m))) UaD\ S.

ses

REMARK 3.16. If each X(s), s € S, is a group, then the Silov boundary
Kg is naturally homeomorphic to the maximal ideal space bg (OD) of algebra
SAPx(S), cf. Theorem 2.7.
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Next, we formulate a result on the Cech cohomology groups of b3 (D).

THEOREM 3.17.

(i) The Cech cohomology groups

H*(b3(D), Z) = %H’“(bz(s)(R),Z), k> 1.

(ii) Suppose that each %(s) is a subset of Ry or R_. Then H*(b3,(D),Z) = 0,

k> 1, and SAPx(S) N H> (D) is projective free.

In the proof of part (ii) we use the main result of [3].
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