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Abstract. We study the algebras of bounded holomorphic functions

on the unit disk whose boundary values, having, in a sense, the weak-
est possible discontinuities, belong to the algebra of semi-almost periodic
functions on the unit circle. The latter algebra contains as a special case
an algebra introduced by Sarason in connection with some problems in
the theory of Toeplitz operators. We show that such algebras have the
Grothendieck approximation property, prove the corona theorem for them
and formulate some results on the structure of their maximal ideal spaces.

Also, we extend the notion of the Bohr–Fourier spectrum to holomorphic
semi-almost periodic functions and prove that under certain assumptions
on their spectra the corresponding algebras are projective free and their
maximal ideal spaces have trivial Čech cohomology groups.

Résumé. On étudie les algèbres des fonctions holomorphes bornées
sur le disque unité dont les valeurs au bord ayant, dans us certain sens, des
discontinuités les plus faibles possible, appartiennent á l’algèbre de fonc-
tions semi-presque périodique sur le circle unité. Cette dernière contient,

en particulier, une algèbre introduite par Sarason en relation avec cer-
tains problèmes de la théorie des opérateurs de Toeplitz. On montre que
ces algèbres ont la propriéte d’approximation de Grothendieck; on prouve

le theorème corona pour celles-ci et on formule quelques résultats sur la
structure de leurs espaces idéaux maximaux. On étend aussi la notion
du spectre de Bohr-Fourier à des fonctions holomorphiques semi-presques
périodiques et on prouve que sous certaines hypothèses sur leur spectres,
tout module projectif des algèbres correspondants est libre et leurs espaces
idéaux maximaux ont des cohomologies triviales de Čech.

1. Introduction In this paper we study Banach algebras of holomorphic
semi-almost periodic functions, i.e., bounded holomorphic functions on the unit
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disk D ⊂ C whose boundary values belong to the algebra SAP(∂D) ⊂ L∞(∂D)
of semi-almost periodic functions on the unit circle ∂D. The latter algebra con-
tains as a special case an algebra introduced by Sarason [15] in connection with
some problems in the theory of Toeplitz operators. Our primary interest in
holomorphic semi-almost periodic functions is motivated by the problem of de-
scription of the weakest possible boundary discontinuities of functions inH∞(D),
the Hardy space of bounded holomorphic functions on D. (Recall that a func-
tion f ∈ H∞(D) has radial limits almost everywhere on ∂D, the limit function
f |∂D ∈ L∞(∂D), and f can be recovered from f |∂D by means of the Cauchy
integral formula.) In the most general form this problem is as follows.

Given a continuous function Φ: C → C to describe the minimal Banach
subalgebraH∞

Φ (D) ⊂ H∞(D) containing all invertible elements f ∈ H∞(D)
such that Φ(f)|∂D is piecewise Lipschitz having finitely many first-kind
discontinuities.

Clearly, each H∞
Φ (D) contains the disk-algebra A(D) (i.e., the algebra of holo-

morphic functions continuous up to the boundary). Moreover, if Φ(z) = z, Re(z),
or Im(z), then the Lindelöf theorem (see e.g., [9]) implies that H∞

Φ (D) = A(D).
In contrast, if Φ is constant on a closed simple curve which does not encompass
0 ∈ C, then H∞

Φ (D) = H∞(D). (This result is obtained by consequent applica-
tions of the Carathéodory conformal mapping theorem, the Mergelyan theorem,
and the Marshall theorem; see [9].) In [4] we studied the case of Φ(z) = |z|
and showed that H∞

Φ (D) coincides with the algebra of holomorphic semi-almost
periodic functions SAP(∂D) ∩ H∞(D). In the present paper we continue the
investigation. Despite the fact that our results concern the particular choice of
Φ(z) = |z|, the methods developed here and in [4] can be applied further to a
more general class of functions Φ.

Let bD be the maximal ideal space of the algebra SAP(∂D)∩H∞(D), i.e., the
set of all nonzero homomorphisms SAP(∂D) ∩ H∞(D) → C equipped with the
Gelfand topology. The disk D is naturally embedded into bD. In [4] we proved
that D is dense in bD (the so-called corona theorem for SAP(∂D) ∩ H∞(D)).
We also described the topological structure of bD. In the present paper we re-
fine and extend some of these results. In particular, we introduce Bohr–Fourier
coefficients and spectra of functions from SAP(∂D), describe Čech cohomol-
ogy groups of bD, and establish projective freeness of certain subalgebras of
SAP(∂D) ∩ H∞(D). Recall that a commutative ring R with identity is called
projective free if every finitely generated projective R-module is free. Equiva-
lently, R is projective free if and only if every square idempotent matrix F with
entries in R (i.e., such that F 2 = F ) is conjugate over R to a matrix of the form

(
Ik 0
0 0

)

where Ik stands for the k×k identity matrix. Every field F is trivially projective-
free. Quillen and Suslin proved that if R is projective free, then the rings of
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polynomials R[x] and formal power series R[[x]] over R are projective free as
well (see [12]). Grauert proved that the ring O(Dn) of holomorphic functions on
the unit polydisk D

n is projective free [10]. It was shown in [6] that the triviality
of any complex vector bundle of finite rank over the connected maximal ideal
space of a unital semi-simple commutative complex Banach algebra is sufficient
for its projective freeness. We employ this result to show that the subalgebras
of SAP(∂D) ∩ H∞(D) whose elements have their spectra in non-negative or
non-positive semi-groups are projective free. Note that if a unital semi-simple
commutative complex Banach algebra A is projective free, then it is Hermite, i.e.,
every finitely generated stably free A-module is free. Equivalently, A is Hermite
if and only if any k × n matrix, k < n, with entries in A having rank k at each
point of the maximal ideal space of A can be extended to an invertible n × n
matrix with entries in A, see [7]. (Here the values of elements of A at points of
the maximal ideal space are defined by means of the Gelfand transform.)

Finally, we prove that SAP(∂D) ∩ H∞(D) has the approximation property,
i.e., each compact linear operator on SAP(∂D) ∩ H∞(D) can be approximated
in operator norm by linear operators of finite rank. (This result strengthens
the approximation theorem of [4].) Although it is strongly believed that the
class of spaces with the approximation property includes practically all spaces
which appear naturally in analysis, it is not known yet even for the space H∞(D)
(see [2] for some results in this direction). The first example of a space which
fails to have the approximation property was constructed by Enflo [8]. Since
Enflo’s work, several other examples of such spaces were constructed (for the
references see [14]). Many problems of Banach space theory admit especially
simple solutions if one of the spaces under consideration has the approximation
property. One of such problems is the problem of determination whether given
two Banach algebras A ⊂ C(X), B ⊂ C(Y ) (X and Y are compact Hausdorff
spaces) their slice algebra

S(A,B) := {f ∈ C(X × Y ) : f(·, y) ∈ A for all y ∈ Y, f(x, ·) ∈ B for all x ∈ X}

coincides with A⊗B, the closure in C(X × Y ) of the symmetric tensor product
of A and B. For instance, this is true if either A or B have the approximation
property. The latter is an immediate consequence of Grothendieck theorem (see
Theorem 3.4).

The paper is organized as follows. Section 2 is devoted to the algebra of semi-
almost periodic functions SAP(∂D). In Section 3 we formulate our main results
on the algebra of holomorphic semi-almost periodic functions SAP(∂D)∩H∞(D).
The detailed proofs of all statements are contained in [5].

2. Semi-almost periodic functions We first recall the notion of a Bohr
almost periodic function on R. In what follows, by Cb(R) we denote the algebra
of bounded continuous functions on R endowed with sup-norm.

Definition 2.1 ([1]). A function f ∈ Cb(R) is said to be almost periodic if
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the family of its translations {Sτf}τ∈R , Sτf(x) := f(x+ τ), x ∈ R, is relatively
compact in Cb(R).

Let AP(R) be the Banach algebra of almost periodic functions endowed with
sup-norm. The basic characteristics of an almost periodic function f ∈ AP(R)
are its Bohr–Fourier coefficients aλ(f) and the spectrum spec(f), defined in
terms of the mean value

M(f) := lim
T→+∞

1

2T

∫ T

−T

f(x)dx ∈ C.

Specifically,

aλ(f) := M(fe−iλx), λ ∈ R.

Then aλ(f) 6= 0 for at most countably many values of λ; these values form the
spectrum spec(f) of f . In particular, if f =

∑∞
l=1 cle

iλlx (cl 6= 0,
∑∞

l=1 |cl| < ∞),
then spec(f) = {λ1, λ2, . . . }.

One of the main results of the theory of almost periodic functions states that
each function f ∈ AP(R) can be uniformly approximated by functions of the
form

∑m
l=1 cle

iλlx with λl ∈ spec(f).

Let Γ ⊂ R be a unital additive semi-group (i.e., 0 ∈ Γ). It follows easily
from the above approximation result that the space APΓ(R) of almost periodic
functions with spectra in Γ forms a unital Banach subalgebra of AP(R).

Next, we recall the definition of a semi-almost periodic function on ∂D in-
troduced in [4]. In what follows, we consider ∂D with the counterclockwise
orientation. For t0 ∈ [0, 2π) let

γk
t0
(s) := {ei(t0+kt) : 0 ≤ t < s < 2π}, k ∈ {−1, 1}

be two open arcs having eit0 as the right and the left endpoints (with respect to
the orientation), respectively.

Definition 2.2 ([4]). A function f ∈ L∞(∂D) is called semi-almost periodic
on ∂D if for any t0 ∈ [0, 2π) and any ε > 0 there exist a number s = s(t0, ε) ∈
(0, π) and functions fk : γ

k
t0
(s) → C, k ∈ {−1, 1}, such that functions

t 7→ fk
(
ei(t0+kset)

)
, −∞ < t < 0, k ∈ {−1, 1},

are restrictions of some almost periodic functions from AP(R), and

sup
z∈γk

t0
(s)

|f(z)− fk(z)| < ε, k ∈ {−1, 1}.
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By SAP(∂D) we denote the Banach algebra of semi-almost periodic functions
on ∂D endowed with sup-norm. It is easy to see that the set of points of dis-
continuity of a function in SAP(∂D) is at most countable. For S being a closed
subset of ∂D we denote by SAP(S) the Banach algebra of semi-almost periodic
functions on ∂D that are continuous on ∂D \ S. (Note that Sarason’s algebra
introduced in [15] is isomorphic to SAP({z0}), z0 ∈ ∂D.)

Example 2.3 ([4]). A function g defined on R ⊔ (R+ iπ) is said to belong
to the space AP(R⊔ (R+ iπ)) if the functions g(x) and g(x+ iπ), x ∈ R, belong
to AP(R). The space AP(R ⊔ (R + iπ)) is a function algebra (with respect to
sup-norm).

Given s0 ∈ ∂D consider the map ϕs0 : ∂D \ {−s0} → R, ϕs0(s) := 2i(s0−s)
s0+s

,
and define a linear isometric embedding Ls0 : AP(R ⊔ (R + iπ)) → L∞(∂D) by
the formula

(Ls0g)(s) := (g ◦ Log ◦ϕs0)(s),

where Log(z) := ln |z|+ iArg(z), z ∈ C\R−, and Arg : C\R− → (−π, π) stands
for the principal branch of the multi-function arg. Then the range of Ls0 is a
subspace of SAP({−s0, s0}) and the graph of each Ls0g (for a real-valued g) has
the following form

Proposition 2.4. For every s0 ∈ ∂D there exists a homomorphism of Ba-
nach algebras Es0 : SAP(∂D) → AP(R ⊔ (R+ iπ)) of norm 1 such that for each
f ∈ SAP(∂D) the function f −Ls0(Es0f) ∈ SAP(∂D) is continuous and equal to
0 at s0. Moreover, any bounded linear operator SAP(∂D) → AP(R ⊔ (R + iπ))
satisfying this property coincides with Es0 .

The functions f−1,s0(x) := (Es0f)(x) and f1,s0(x) := (Es0f)(x + iπ), x ∈ R,
are used to define the left (k = −1) and the right (k = 1) mean values Mk

s0
(f)

of a function f ∈ SAP(∂D) over s0 (cf. Remark 2.8 below). Precisely, we put

Mk
s0
(f) := M(fk,s0).

Proposition 2.5. The mean value Mk
s0

is a continuous linear functional
SAP(∂D) → C.
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Similarly, we define the left (k = −1) and the right (k = 1) Bohr–Fourier
coefficients of f over s0 by the formulas akλ(f, s0) := aλ(fk,s0). Those values of
λ for which akλ(f, s0) 6= 0 form the left (k = −1) and the right (k = 1) spectrum
specks0(f) of f over s0. Moreover, specks0(f) is at most countable.

Let Σ : S×{−1, 1} → 2R be a set-valued map which associates with each s ∈ S,
k ∈ {−1, 1} a unital semi-group Σ(s, k) ⊂ R. By SAPΣ(S) ⊂ SAP(S) we denote
the Banach algebra of semi-almost periodic functions f with specks(f) ⊂ Σ(s, k)
for all s ∈ S, k ∈ {−1, 1}.

Theorem 2.6.

(i) A function f ∈ SAPΣ(S) if and only if for each s ∈ S and k ∈ {−1, 1} the al-
most periodic functions fk in Definition 2.2 can be chosen from APΣ(s,k)(R).

(ii) The “total spectrum”
⋃

s∈∂D, k=±1 spec
k
s(f) of a function f ∈ SAP(∂D) is at

most countable.

For a unital semi-group Γ ⊂ R by bΓ(R) we denote the maximal ideal space
of algebra APΓ(R). (E.g., for Γ = R the space bR := bR(R), commonly called
the Bohr compactification of R, is a compact abelian topological group viewed
as the inverse limit of compact finite-dimensional tori. The group R admits a
canonical embedding into bR as a dense subgroup.)

Let bSΣ(∂D) be the maximal ideal space of algebra SAPΣ(S) and rSΣ : bSΣ(∂D) →
∂D be the mapping transpose to the embedding C(∂D) →֒ SAPΣ(S).

Theorem 2.7.

(i) The map transpose to the restriction of homomorphism Es0 to SAPΣ(S)
determines an embedding hs

Σ : bΣ(s,−1)(R) ⊔ bΣ(s,1)(R) →֒ bSΣ(∂D) whose
image coincides with (rSΣ)

−1(s).
(ii) The restriction rSΣ : bSΣ(∂D) \ (r

S
Σ)

−1(S) → ∂D \ S is a homeomorphism.
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(For an m point set S and each Σ(s, k), s ∈ S, k ∈ {−1, 1}, being a group, the
maximal ideal space bSΣ(∂D) is the union of ∂D\S and 2m Bohr compactifications
bΣ(s,k)(R) that can be viewed as (finite or infinite dimensional) tori.)

Remark 2.8. There is an equivalent way to define the mean value of a
semi-almost periodic function. Specifically, for a semi-almost periodic function
f ∈ SAP(∂D), k ∈ {−1, 1}, and a point s0 ∈ S we define the left (k = −1) and
the right (k = 1) mean values of f over s0 by

Mk
s0
(f) := lim

n→∞

1

bn − an

∫ bn

an

f
(
s0 · e

iket
)
dt,

where {an}, {bn} are arbitrary sequences converging to −∞ such that limn→∞

(bn − an) = +∞.
The Bohr–Fourier coefficients of f over s0 can be then defined by the formulas

akλ(f, s0) := Mk
s0
(fe−iλ logk

t0 ),

where s0 = eit0 and

logtk0 (e
i(t0+kt)) := ln t, 0 < t < 2π, k ∈ {−1, 1}.

3. Holomorphic semi-almost periodic functions. Let Cb(T ) denote
the space of bounded continuous functions on the strip T := {z ∈ C : Im(z) ∈
[0, π]} endowed with sup-norm.

Definition 3.1 ([1]). A function f ∈ Cb(T ) is called holomorphic almost
periodic on the strip T if it is holomorphic in the interior of T and the family of
translates {Sxf}x∈R, Sxf(z) := f(z + x), is relatively compact in Cb(T ).

We denote by APH(T ) the Banach algebra of holomorphic almost periodic
functions endowed with sup-norms. The mean value of a function f ∈ APH(T )
is defined by the formula

M(f) := lim
T→+∞

1

2T

∫ T

−T

f(x+ iy)dx ∈ C

(M(f) does not depend on y, see [1]). Further, the Bohr–Fourier coefficients
of f are defined by aλ(f) := M(fe−iλz), λ ∈ R. Then aλ(f) 6= 0 for at most
countably many values of λ and these values form the spectrum spec(f) of f .
For instance, if f =

∑∞
l=1 cle

iλlz (cl 6= 0,
∑∞

l=1 |cl| < ∞), then spec(f) =
{λ1, λ2, . . . }. Similarly to the case of functions from AP(R) each f ∈ APH(T )
can be uniformly approximated by functions of the form

∑m
l=1 cle

iλlz with λl ∈
spec(f).
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Let Γ ⊂ R be a unital additive semi-group. The space APHΓ(T ) of holomor-
phic almost periodic functions with spectra in Γ forms a unital Banach algebra.

The functions in SAPΣ(S) ∩H∞(D) are called holomorphic semi-almost pe-
riodic.

Example 3.2 ([4]). Let f ∈ APH(T ), s0 ∈ ∂D. Consider the map

ϕs0 : D̄ \ {−s0} → H̄+, ϕs0(z) :=
2i(s0 − z)

s0 + z
.

Here H
+ is the upper half-plane. Then ϕs0 maps D conformally onto H+ and

∂D \ {−s0} diffeomorphically onto R (the boundary of H+) so that ϕs0(s0) = 0.
Let T0 be the interior of the strip T . Consider the conformal map

Log : H+ → T0, z 7→ Log(z) := ln |z|+ iArg(z),

where Arg : C \ R− → (−π, π) is the principal branch of the multi-function arg.
The function Log is extended to a homeomorphism of H+ \ {0} onto T . Let
g ∈ APH(T ). Then the function

(Ls0g)(z) := (g ◦ Log ◦ϕs0)(z), z ∈ D,

belongs to SAP({−s0, s0}) ∩H∞(D).

Proposition 3.3. Suppose that f ∈ SAP(S) is a holomorphic semi-almost
periodic function. Then spec−1

s (f) = spec1s(f) =: specs(f) and, moreover,

a−1
λ (f, s) = eλπa1λ(f, s) for each λ ∈ specs(f).

(Recall that the choice of the upper indices ±1 is determined by the orientation
of ∂D.)

Proposition 3.3 implies that SAPΣ(S)∩H∞(D) = SAPΣ′(S)∩H∞(D), where

Σ′(s, k) := Σ(s,−1) ∩ Σ(s, 1) for k = −1, 1.

In what follows we assume that

Σ(s,−1) = Σ(s, 1) =: Σ(s).

3.1. Analytical structure of SAPΣ(S) ∩H∞(D) Recall that a Banach space B
is said to have the approximation property if for every compact set K ⊂ B and
every ε > 0 there is an operator T : B → B of finite rank so that ‖Tx− x‖B < ε
for every x ∈ K.

Let A ⊂ C(X) be a closed subspace, B be a Banach space and AB ⊂
CB(X) := C(X,B) be the Banach space of all continuous B-valued functions
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f such that ϕ(f) ∈ A for any ϕ ∈ B∗. By A ⊗ B we denote completion of
symmetric tensor product of A and B with respect to norm

∥∥∥
m∑

k=1

ak ⊗ bk

∥∥∥ := sup
x∈X

∥∥∥
m∑

k=1

ak(x)bk

∥∥∥
B

with ak ∈ A, bk ∈ B.

Theorem 3.4 ([11]). The following statements are equivalent:

(i) A has the approximation property;
(ii) A⊗B = AB for every Banach space B.

Theorem 3.5. SAPΣ(S) ∩H∞(D) has the approximation property.

Our proof of Theorem 3.5 is based on the equivalence established in Theo-
rem 3.4 and on an approximation result for Banach-valued analogues of algebra
SAP(S)∩H∞(D) formulated below. Specifically, for a Banach space B we define

SAPB
Σ (S) := SAPΣ(S)⊗B.

Using the Poisson integral formula we can extend each function from SAPB
Σ (S)

to a bounded B-valued harmonic function on D having the same sup-norm. We
identify SAPB

Σ (S) with its harmonic extension. Let H∞
B (D) be the Banach space

of bounded B-valued holomorphic functions on D equipped with sup-norm. By
(SAPΣ(S) ∩ H∞(D))B we denote the Banach space of all continuous B-valued
functions f on the maximal ideal space bS(D) of algebra SAP(S)∩H∞(D) such
that ϕ(f) ∈ SAPΣ(S) ∩ H∞(D) for any ϕ ∈ B∗. In what follows we naturally
identify D with a subset of bS(D).

Proposition 3.6. Let f ∈ (SAPΣ(S)∩H∞(D))B. Then f |D ∈ SAPB
Σ (S)∩

H∞
B (D).

Let AS
Σ be the closed subalgebra of H∞(D) generated by the disk-algebra

A(D) and the functions of the form geλh, where Re(h)|∂D is the characteristic
function of the closed arc going in the counterclockwise direction from the initial
point at s to the endpoint at −s such that s ∈ S, λ/π ∈ Σ(s) and g(z) := z + s,
z ∈ D (in particular, geλh has discontinuity at s only).

The next result combined with Proposition 3.6 and Theorem 3.4 implies The-
orem 3.5.

Theorem 3.7. SAPB
Σ (S) ∩H∞

B (D) = AS
Σ ⊗B.

As a corollary we obtain

Corollary 3.8. SAPΣ(S) ∩H∞(D) = AS
Σ.
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We conclude this section with a result on the tangential behavior of functions
from SAP(∂D) ∩H∞(D).

Theorem 3.9. Let {zn}n∈N ⊂ D and {sn}n∈N ⊂ ∂D converge to a point
s0 ∈ ∂D. Assume that

lim
n→∞

|zn − sn|

|s0 − sn|
= 0.

Then for every f ∈ SAP(∂D) ∩ H∞(D), either the limits limn→∞ f(zn) and
limn→∞ f(sn) do not exist or exist simultaneously and in the latter case they are
equal.

Remark 3.10. This result implies that the extension (by means of the
Gelfand transform) of each f ∈ SAP(∂D) ∩H∞(D) to the maximal ideal space
of H∞(D) is constant on a nontrivial Gleason part containing a limit point of a
sequence in D converging tangentially to ∂D (we refer to [9] for the corresponding
definitions).

3.2. Topological structure of the maximal ideal space of SAPΣ(S)∩H∞(D) Let
bSΣ(D) denote the maximal ideal space of SAPΣ(S)∩H∞(D) and aSΣ : bSΣ(D) 7→ D̄

be the continuous surjective map transpose to the embedding

A(D) →֒ SAPΣ(S) ∩H∞(D).

(Recall that the maximal ideal space of the disk-algebra A(D) is homeomorphic
to D̄.)

The following result is an immediate consequence of Corollary 3.8.

Theorem 3.11. SAPΣ(S)∩H∞(D) is generated by algebras SAPΣ|F (F )∩
H∞(D) for all possible finite subsets F ⊂ S.

Here Σ|F stands for the restriction of the set-valued map Σ to F .
The inclusion

SAPΣ|F1
(F1) ∩H∞(D) ⊂ SAPΣ|F2

(F2) ∩H∞(D) if F1 ⊂ F2

determines a continuous map of maximal ideal spaces ωF2

F1
: bF2

Σ|F2
(D) → bF1

Σ|F1
(D).

The family {bFΣ|F
(D) ; ω}F⊂S ; #F<∞ forms the inverse limiting system. From

Theorem 3.11 we obtain the following.

Theorem 3.12. bSΣ(D) is the inverse limit of {bFΣ|F
(D) ; ω}F⊂S ; #F<∞.

In what follows, by bΓ(T ) we denote the maximal ideal space of algebra
APHΓ(T ) and by ιΓ : T → bΓ(T ) the continuous map determined by evalua-
tions at points of T .
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Theorem 3.13.

(i) For each s ∈ S there exists an embedding isΣ : bΣ(s)(T ) →֒ bSΣ(D) whose image
is (aSΣ)

−1(s) such that the pullback (isΣ)
∗ maps SAPΣ(S)∩H

∞(D) surjectively
onto APHΣ(s)(T ). Moreover, the composition of the restriction map to R ⊔
(R + iπ) and (isΣ ◦ ιΣ(s))

∗ coincides with the restriction of homomorphism
Es to SAPΣ(S) ∩H∞(D) (see Proposition 2.4).

(ii) The restriction aSΣ : bSΣ(D) \ (a
S
Σ)

−1(S) → D̄ \ S is a homeomorphism.

Since SAPΣ(S) ∩H∞(D) separates the points on D, the evaluation at points of
D determines a natural embedding ι : D →֒ bSΣ(D).

One has the following commutative diagram of maximal ideal spaces consid-
ered in the present paper, where the “dashed” arrows stand for embeddings in
the case Σ(s,−1) = Σ(s, 1) are groups for all s ∈ S, and for continuous maps
otherwise.

T
ιΣ(s)

// bΣ(s)(T )
_�

ιsΣ

��

bΣ(s,−1)(R) ⊔ bΣ(s,1)(R)? _oo❴ ❴ ❴

_�

hs

Σ

��

D
� �

ι
//

� q

""❊
❊

❊

❊

❊

❊

❊

❊

❊

❊

bSΣ(D)

aS

σ

��

bSΣ(∂D)
? _oo❴ ❴ ❴ ❴ ❴ ❴ ❴

rSΣ

��

D ∂D? _oo

Theorem 3.14 (Corona Theorem). ι(D) is dense (in the Gelfand topology)
in bSΣ(D) if and only if each Σ(s), s ∈ S, is a group.

Let KS
Σ be the Šilov boundary of algebra SAPΣ(S) ∩ H∞(D), that is, the

minimal closed subset of bSΣ(D) such that for every f ∈ SAPΣ(S) ∩H∞(D)

sup
z∈D

|f(z)| = max
ϕ∈KS

Σ

|f(ϕ)|,

where f is assumed to be extended to bSΣ(D) by means of the Gelfand transform.
For a non-trivial semigroup Γ ⊂ R by clΓ(R+ iπ) and clΓ(R) we denote closures
of ιΓ(R + iπ) and ιΓ(R) in bΓ(T ) . One can easily show that these closures are

homeomorphic to bΓ̂(R), where Γ̂ is the minimal subgroup of R containing Γ.

Theorem 3.15.

KS
Σ =

( ⋃
s∈S

isΣ
(
clΣ(s)(R) ∪ clΣ(s)(R+ iπ)

))
∪ ∂D \ S.

Remark 3.16. If each Σ(s), s ∈ S, is a group, then the Šilov boundary
KS

Σ is naturally homeomorphic to the maximal ideal space bSΣ(∂D) of algebra
SAPΣ(S), cf. Theorem 2.7.
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Next, we formulate a result on the Čech cohomology groups of bSΣ(D).

Theorem 3.17.

(i) The Čech cohomology groups

Hk
(
bSΣ(D),Z

)
∼=

⊕
s∈S

Hk
(
bΣ(s)(R),Z

)
, k ≥ 1.

(ii) Suppose that each Σ(s) is a subset of R+ or R−. Then Hk
(
bSΣ(D),Z

)
= 0,

k ≥ 1, and SAPΣ(S) ∩H∞(D) is projective free.

In the proof of part (ii) we use the main result of [3].

Acknowledgments We are grateful to S. Favorov, S.Kislyakov and O.Reinov
for useful discussions.
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