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TORSION IN THE K,-GROUP OF A
RECURSIVE SUBHOMOGENEOUS ALGEBRA

SANDRO MOLINA-CABRERA

Presented by George Elliott, FRSC

ABSTRACT. We show that the Ko-group of an inductive limit of recur-
sive subhomogeneous algebras with compact metrizable spaces of dimension
at most one as local spectra is torsion free. This result implies that the
Ko-group of a unital simple AH algebra which is the inductive limit of
recursive subhomogeneous algebras, with compact metrizable spaces of di-
mension at most one as local spectra, is torsion free. This proves that Li’s
reduction theorem for the dimension of the local spectra of unital simple
AH algebras cannot be improved, in other words, that the dimension of
the local spectra of unital simple AH algebras cannot be further reduced
from two to one, even when we use subhomogeneous algebras. This also
shows that if a reduction theorem for the dimension of the local spectra of
simple inductive limits of recursive subhomogeneous algebras exists, then,
after the reduction, the local spectra of the building blocks cannot always
be one dimensional.

RESUME. Nous démontrons que le Kp-groupe d’une limite inductive
des algebres sous-homogenes récursives, dont les spectres locaux consistent
en des espaces compacts métrisables de dimension au plus un, n’a pas de
torsion. Ce résultat implique que les Kg-groupes d’une algebre AH sim-
ple et avec 'unité qui est la limite des algebres sous-homogeénes reéursives,
dont les spectres locaux consistent en des espaces compacts métrisables de
dimension au plus un, n’a pas de torsion. Cela prouve que le théoreme
de Li de la réduction pour la dimension des spectres locaux des algebres
AH simples et avec 'unité ne peut pas étre améliorée, en d’autres ter-
mes, que la dimension des spectres locaux des algebres AH simples et avec
I’unité ne peut pas encore étre réduit de deux & un, méme quand on utilise
des algebres sous-homogenes. Cela montre aussi que si un théoréeme de
réduction pour la dimension des spectres locaux d’une limite inductive sim-
ple des algebres sous-homogeénes récursives existe, alors, apres la réduction,
les spectres locaux des blocs de construction ne peuvent pas étre toujours
de dimension un.

A C*-algebra A is called an ASH (approximately sub-homogeneous) alge-

bra if it is the inductive limit of a sequence (A4,);> of C*-algebras where A,
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is a subalgebra of @2, My, (C(X,,)) with X, a compact metrizable space,
and where n;, s, are positive integers. In particular, an AH (approximately
homogeneous) algebra is a C*-algebra which is the inductive limit of a se-
quence (A,)F2 of C*-algebras where A, = @jgl Pn; My, (C(Xn,))Pn,, with
X, a compact metrizable space, p,; a projection in M, (C(Xy,,), and n;, s,
positive integers. The spaces X,,; are known as the local spectra of the alge-
bra. Unital simple AH algebras have been intensively studied during the past
two decades, with special emphasis on their classification. See [2] and [3]. In
particular, unital simple AH algebras with no dimension growth, that is, with
supnj{dim(an)} < 400, have been classified up to isomorphism using their
scaled ordered K-groups (Ko(A), Ko(A)T,[1a]o, K1(A)), their space of tracial
states T'(A), and the natural pairing between Ky(A) and T'(A).

One of the main techniques used in the classification of unital simple AH
algebras consists in rewriting the algebra as another inductive limit in which the
dimensions of the local spectra are small. Gong showed that a unital simple AH
algebra with metrizable, compact local spectra and with no dimension growth
can be written as an inductive limit where the local spectra consist of spaces
of dimension at most three [4]. Using this, George Elliott, Guihua Gong, and
Liangqing Li proved a classification theorem assuming the AH algebras had this
form [3]. Later, Liangqing Li, using homogeneous C*-algebras and dimension
drop C*-algebras (which are subhomogeneous), showed that a simple AH algebra
with metrizable, compact local spectra and with slow dimension growth can be
rewritten as an inductive limit where the dimension of the local spectra is at
most two and proved a classification theorem assuming the algebras had this
particular form [7]. Gong and Li noted that the dimension cannot be reduced
to one if we only use dimension drop subhomogeneous algebras together with
homogeneous algebras, since it is not possible to generate torsion in Ky using
dimension drop algebras and homogeneous algebras with one-dimensional local
spectra as building blocks. It is natural to ask if we can reduce the dimension
of the local spectra from two to one if we use more general subhomogeneous
C*-algebras.

Recursive subhomogeneous algebras were introduced by N. C. Phillips in [8]
(we recall the definition below). They include dimension drop algebras, splitting
interval algebras and homogeneous algebras, C*-algebras that have been used as
building blocks. See [5], [7], and [8]. Considering this, it is natural to ask if we
can further reduce the dimension of the local spectra of AH algebras from two
to one if we use recursive subhomogeneous algebras as building blocks, and in
particular, we can ask if the Ky-group of a recursive subhomogeneous algebra
with one-dimensional compact metrizable spaces is torsion free. On the other
hand, the class of recursive subhomogeneous algebras is a natural place to prove
analogous results first established for homogeneous algebras. Thus, it is reason-
able to use the classification of unital simple AH algebras as a model for the
classification of inductive limits of recursive subhomogeneous algebras. We show
in this note that the Ky-group of an inductive limit of recursive subhomogeneous
algebras with compact, metrizable spaces of dimension one as local spectra has
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no torsion. Hence it is impossible to produce torsion in the Ky-group of an in-
ductive limit of recursive subhomogeneous algebras, or even in the Ky-group of a
unital simple AH algebra, using recursive subhomogeneous building blocks with
one-dimensional spectra. In addition, if a reduction theorem exists for recursive
subhomogeneous algebras, then, after reduction, the local spectra of the building
blocks cannot be assured to be one-dimensional.

DEFINITION 1. Let A, B, and C be C*-algebras. Let ¢: A — C,¢: B — C
be s#-homomorphisms. The pullback of A and B along C is the C*-algebra

A®c B={(a,b) € Ax B:¢(a)=1(b)}.

We recall the definition of a recursive subhomogeneous algebra. We refer the
reader to [8] for further information. First, let us denote by M}, the C*-algebra
of k x k matrices with complex entries. Let My(C(X)) be the C*-algebra of
Mj-valued continuous functions over a topological space X. We recall that
M, (C(X)) can be identified with C'(X, M},) in a canonical way.

DEFINITION 2. A recursive subhomogeneous algebra is a C*-algebra defined
as follows.

(i) If X is a compact Hausdorff space, then M (C(X)) is a recursive subhomo-
geneous algebra.

(ii) If A is a recursive subhomogeneous algebra, X a compact Hausdorff space,
Xy a closed subset of X, ¢: A — M(C(Xy)) any *-homomorphism, and
P Mi(C(X)) = Mi(C(Xp)) the restriction homomorphism, then the pull-
back

ASm(c(xo)) Mi(C(X)) ={(a, f) € A My (C(X)) : ¢(a) = ¥(f)}
is a recursive subhomogeneous algebra.

In (ii), the choice Xy = & is allowed (and thus ¢ = 0 is allowed) and hence
the pullback could be an ordinary direct sum. Also, it is convenient to allow the
zero C*-algebra to be a recursive subhomogeneous algebra.

For a compact Hausdorff space Xj, set C = M,,;)(C(Xg)) and set cY =
M, (1) (C(Xy,0)) for a (possibly empty) closed subset X}, o of Xj. It follows from
the definition that a recursive subhomogeneous algebra has a decomposition of
the form

[+ [[Co ®co C1] By Co - - -] ®co Cl,

with [ < oo, and where the maps C — C’,g are always assumed to be the

restriction maps. A recursive subhomogeneous algebra can have many different

decompositions, but it always has a decomposition of the form given above.
We associate this decomposition with the following data:

o its length I;
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* the k-th stage algebra (k < 1)
Ry = [+ [[Co@co C1] By Co] -] @0 C;

e its local spectra Xo, X1, Xo2,...,X;

* its total space X = Hé‘:oXj,O;

* its interconnecting spaces X1, X2,0,X3,0,...,X1,0;
s its topological dimension dim(X) = max; dim(Xj).

REMARK 3. In [8] the spaces X, X1, Xo,...,X; are called the base spaces
of the decomposition, but following the convention for AH algebras, we prefer
to call them the local spectra. (See [8, Definition 1.2].) By the dimension of a
space X we mean the covering dimension of X.

LEMMA 4. Let X be a simplicial complex of dimension one and let Xq be
a subcomplezr of X. For any u: Xg — Uyp(C) there is a unitary v: X — U,(C)
such that uw = v|x,. Consequently, if V. : K1(M(C(X))) = K1 (My(C(Xy))) is
the map induced by the restriction map ¥: Mp(C(X)) — My(C(Xo)), then 1,
18 surjective.

ProOOF.  We must show that given u: X — Uy(C) there is v: X — U(C)
such that v|x, = u. Since Xj is a subcomplex of X, we can construct X from X
by attaching simplices of dimension zero or one. Therefore it is enough to prove
the statement for two special cases: in the first one, Xg = @, X = {pt}, and in the
second one, Xo = {0,1} and X = [0, 1]. The first case is trivial. For the second
case it is enough to show that for any two unitaries v and v, there is a continuous
family {u;}, for ¢ in [0, 1], such that ugp = v and u; = v. Since u*v is a unitary,
there is a unitary w such that u*v = w(e' @ 2 @ - - - @ e+ )w*, for some real
numbers Aj, Aa, ..., A\r. For t € [0,1], let u; = uw(e™M! @ 2t @ - - @ ert)w*.
Then ¢ — u; is continuous and {u;} connects ug and u;. O

LEMMA 5. Let X be a compact Hausdorff space and let F' be a closed subset
of X. Let f: F — Ug(C) be a continuous function. Then there is an open subset

O containing F and a continuous function f: O — Ui(C) such that ﬂp = f.

PROOF. Recall that Uy (C) C M (C) = R*. By the Tietze extension
theorem there is a map g: X — M(C) such that g|r = f. Note that Gl (C) is
an open set of My (C), and thus, if we denote g~ (Gl;(C)) by O, O is an open
subset of X and it contains F, since U (C) C Gl (C). Define u: Gl (C) — U (C)
by u(A) = (AA*)~2 A. Note that for A in Gli(C), u(A)*u(A) = u(A)u(A)* = 1.
Also u|y, ) = id. Finally, let f: O — Uy (C) be defined by f =wu o g. O

We will also need the following fact.

LEMMA 6. Assume X is a compact Hausdorff space of dimension at most 1.
Then Ko(My((C(X))) is torsion free.
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Let Cx, (X, M}) denote the C*-subalgebra of M, (C(X)) consisting of all the
My, valued continuous functions over X that vanish over Xj, i.e., such that
f|Xo =0.

PROPOSITION 7.  Let A be a C*-algebra such that Ko(A) is torsion free.
Let X be a compact, metrizable space of dimension at most 1, and let Xy be
a closed subset of X. Let ¢p: Mp(C(X)) = Mp(C(Xo)) denote the restriction
homomorphism, let ¢: A — Mp(C(Xy)) be a unital x-homomorphism and set
B =A@, c(x0)) Me(C(X)). Then Ko(B) is torsion free.

To prove Proposition 7 let us begin by denoting the projection from B to A by
0. Since the *-homomorphism ¥ is surjective we have the following.

LEMMA 8. The map o is surjective.
Consider the following short exact sequences:

0 —> Cxo(X, My) ——> My(C(X)) —> My(C(X,)) — 0

and

0 —> Cx,(X,My) —> B —2> A 0,

where § is obtain by composing the Cx, (X, My) — My (C(X)) with the map
M (C(X)) — B defined by f — (0, f). Combining these two short exact se-
quences gives the commutative diagram

5 o

0 —— Cx, (X, M) B A 0
l | | l
0 —> Cxo(X, M) ——> My(C(X)) —> Mi(C(Xo)) — 0.

Since this diagram is commutative, in K-theory it gives

o1 Sx O

(
|+ !
Y P

K1 (M (C(X0)))—>Ko(Cux, (X, M) ——> Ko (M (C(X))) —> Ko (M (C(X0))).

Ko(A)

From this we obtain the following short exact sequence:

0 — > Ko(Cxy(X, Mi))/Im(81) —> Ko(B) —> Im(0.) —> 0.
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If Ko(Cx, (X, My))/Im(01) and Im(o,) are torsion free, then it will follow that
the group Ko(ADc(x,,n,,) Mr(C(X))) is torsion free. Note that Im(o.) is torsion
free, since it is a subgroup of the group Ky(A) that we assume to be torsion
free. Therefore, to prove that the quotient group Ko(Cx, (X, My))/Im(0;) is
torsion free, it suffices to prove that Ky(Cx, (X, My)) is torsion free and that
01 is identically zero. However, by commutativity, d; = 0 implies 9; = 0. Now
consider the sequence

K1 (M(C(X)) 255 K (My(C(X0)))—2m Ko (Cixy (X, M) —— Ko (Mi(C(X))).

If 0 is identically zero, then Ko(Cx, (X, Mj)) is isomorphic to a subgroup of
Ko(Mi(C(X))) that is torsion free by Lemma 6. Hence to prove Proposition 7,
it suffices to prove that 9] is identically zero. By exactness, it is enough to show
that 1, is surjective.

Recall that a compact metric space X is the inverse limit of a sequence (X ]);“:o‘f
of simplicial complexes with the dimension of each complex less than or equal
to the dimension of X. (See [1]). Define X, to be the image of X, under the
canonical map from X to X; and consider the following commutative diagram:

X, X, X
X1,0 Xa2,0 Xo

Passing to K-theory we get

K1 (My(C(X1))) —— Ki1(Mi(C(X2))) K1 (My(C(X)))

i i i

Ki(Mi(C(X10)) —— Ki(M(C(X20))) — - —— Ki(Mk(C(X0))).

Since the diagram is commutative, if we show that each map
K1 (M(C(X;))) = K1 (Mp(C(Xj0)))
is surjective, where X; is a simplicial complex and Xj is a closed subset of
X, then it will follow that . : K1 (My(C(X))) = K1 (Mi(C(Xo))) is surjective.

Hence we can assume that X is a simplicial complex and X is a closed subset
of X. Let us now finish the proof of Proposition 7.

LEMMA 9. The map . is surjective.
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PROOF. To show that 1, is surjective, we will take advantage of Lemma 4
by “inserting” a simplicial complex Y between X and X, in order to factor .,
using a technique of Liangqing Li [6]. Let [f] be an element of K3 (M (C(Xo)))
represented by a function f: Xg — U,(C). To show that ¢, is surjective it is
enough to show that there is a function from X to U, (C) such that its restriction
to Xo is f. Let us show the existence of such a function.

By Lemma 5, with I' = Xy, there is an open set O of X such that O contains
X and there is a function f: O — U, (C) such that f|x, = f. Enlarge Xj to a
simplicial subcomplex Y of X such that Y C O as follows. Since both X, and
X \ O are compact, dist(Xo, X \ O) =6 > 0. Take a subdivision of X such that
each simplex of X has diameter at most §/2. Let Y denote the subcomplex of X
consisting of all simplices A, satisfying AN Xy # &, together with their faces. It
is clear that Xy C Y and dist(y, Xo) < /2 for any y € Y. This implies Y C O.

By Lemma 4, fly can be extended to a function f: X — U, (C) with fly = f.
Hence, f|Xo = f. Therefore,

Do ([f]) = [f] for [f] € K1 (My(C(X)). O

ProprosITION 10.  Let R be a recursive subhomogeneous algebra with com-
pact, metrizable spaces of dimension at most one as local spectra. Then Ko(R)
is torsion free.

PrROOF. By Lemma 6, if X is a compact Hausdorff space of dimension at
most one, then the group Ko(My(C(X))) is torsion free. Now assume that the
statement holds for recursive subhomoganeous algebras of decomposition length
I — 1 and assume R has a decomposition of length [. Then

R=[-[[Co®co C1] By Co] -+ -] Beo Cr.
Consider the (I — 1)-th stage algebra and set
A=[-[[Co®cy Ci] By Co] -] By | Cia.
Then R=A ®co_| C}, and we apply the inductive hypothesis and Proposition 7

to finish the proof. O

Recall that the inductive limit of torsion free groups is torsion free. The next
result follows from this fact and from Proposition 10.

THEOREM 11. Let A be a C*-algebra that is the inductive limit of a sequence
(A,)22 of C*-algebras, where each A, is a recursive subhomogeneous algebra
with compact, metrizable spaces of dimension at most one as local spectra. Then

Ky(A) is torsion free.

Since the class of recursive subhomogeneous algebras contains the class of ho-
mogeneous algebras, we get the analogous result for unital simple AH algebras.
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COROLLARY 12.  Let A be a unital simple AH algebra which is the inductive

limit of a sequence (A,) > of C*-algebras, where each A, is a recursive subho-

mogeneous algebra with compact, metrizable spaces of dimension at most one as
local spectra. Then Ko(A) is torsion free.
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