AF EMBEDDING OF CROSSED PRODUCTS OF CERTAIN GRAPH C*-ALGEBRAS BY QUASI-FREE ACTIONS

XIAOCHUN FANG

Presented by George Elliott, FRSC

ABSTRACT. We introduce the notion of quasi-free action of a locally compact abelian group on a graph C*-algebra of a row-finite directed graph, with respect to a labeling of the edges of the graph by elements of the dual group, which we shall call a labeling map. A sufficient condition for AF embedding is given: if the row-finite directed graph is constructed by possibly attaching 1-loops to a row-finite directed graph each weakly connected component of which is a rooted (possibly infinite) directed tree, and the labeling map is almost proper, then the crossed product can be embedded into an AF algebra.

RÉSUMÉ. On introduit la notion d'action quasi-libre d'un groupe localement compact abélien sur la C*-algèbre d'un graphe dirigé dont les rangs sont finis, par rapport à un choix d'étiquettes pour les bords du graphe par éléments du groupe dual, qu'on appellera une application d'étiquette. Une condition suffissante pour que la C*-algèbre soit enfoncée dans une C-algèbre AF (c'est-à-dire, limite de C*-algèbres de dimesion finie), est donnée, dans laquelle interviennent et le graphe lui-même et l'application d'étiquette.

1. Introduction In the last twenty years important progress has been made in the classification of amenable C*-algebras. Much is now known about many special classes of C*-algebras, for example, AH algebras, purely infinite C*-algebras, the crossed products associated with certain C*-algebra dynamical systems, quasi-diagonal C*-algebras and so on. It is well known that the existence of an AF embedding implies quasi-diagonality. Since M. Pimsner and D. Voiculescu's AF embedding result for irrational rotation C*-algebras [11], much effort has been made to embed more general crossed product C*-algebras into AF algebras (for example see [2], [9]–[12]), which sometimes also implies some K-theory information. While the C*-algebra one starts with must be embeddable if the group acting is discrete, T. Katsura [7] successfully embedded into AF algebras certain crossed products of the Cuntz algebras \mathcal{O}_n , which are purely infinite simple C*-algebras, by quasi-free continuous actions of a locally

Received by the editors on October 24, 2008.

The research reported in this article was supported by the National Natural Science Foundation of China (10771161).

AMS Subject Classification: Primary: 46L05; secondary: 19K33.

Keywords: AF embedding, crossed products, graph C*-algebras.

[©] Royal Society of Canada 2009.

compact abelian group. Meanwhile, the quasi-free actions on \mathcal{O}_n have been studied for many years, especially by A. Kishimoto.

In this paper, we introduce the notion of quasi-free action of a locally compact abelian group G, with dual group Γ , on the graph C^* -algebra $C^*(E)$ of a row-finite directed graph E, corresponding to what will be called a labeling map ω from E^* to Γ . Keeping the same embedding strategy as in [7], we will prove that the crossed product of $C^*(E)$ by G can be embedded into an AF algebra for certain special E and ω , thus generalizing the main result Theorem 3.8 in [7] from \mathcal{O}_n to a much bigger class of C^* -algebras $C^*(E)$, which contains both simple C^* -algebras and non-simple C^* -algebras, and also contains both purely infinite C^* -algebras and finite C^* -algebras.

2. Quasi-free actions and almost proper maps A directed graph $E=(E^0,E^1,r,s)$ consists of countable (possibly infinite) sets E^0 of vertices, E^1 of edges, and maps $r,s\colon E^1\to E^0$ identifying the range and source of each edge. The graph is called row-finite if each vertex emits at most finitely many edges. We write E^n for the set of paths $\mu=e_1e_2\cdots e_n$ with length $|\mu|=n$, which are sequences of edges e_i such that $r(e_i)=s(e_{i+1})$ for $1\le i< n$. Then the maps r,s extend naturally to $E^*=\bigcup_{n\ge 0}E^n$ and s extends naturally to the set of infinite paths $\mu=e_1e_2\cdots$. In particular, we have r(v)=s(v)=v for $v\in E^0$. A path μ is called closed if $s(\mu)=r(\mu)$. A path μ with $|\mu|\ge 1$ is called a loop if $s(\mu)=r(\mu)$ and it has distinct vertices except for $s(\mu)=r(\mu)$, and a loop μ is called a 1-loop if $s(\mu)=r(\mu)=1$. A vertex $s(\mu)=r(\mu)=r(\mu)=1$ is a path $s(\mu)=r(\mu)=r(\mu)=1$ with $s(\mu)=r(\mu)=r(\mu)=r(\mu)=1$ is defined by $s(\mu)=r(\mu)=r(\mu)=r(\mu)=1$.

For a directed graph $E = (E^0, E^1, r, s)$, the weakly connected relation \sim in E^0 is defined as follows: for $v, w \in E^0$, $v \sim w$ if and only if v = w or there are e_1, e_2, \ldots, e_n in E^1 , and v_1, v_2, \ldots, v_n in E^0 such that $v_0 = v$, $v_n = w$, and $\{v_{i-1}, v_i\} = \{r(e_i), s(e_i)\}$ $(i = 1, 2, \ldots, n)$. Clearly, \sim is an equivalence relation in E^0 . A directed graph $F = (F^0, F^1, r_F, s_F)$ is called a weakly connected component of E^0 is an equivalence class of \sim in E^0 ,

$$F^1 = \{e \in E^1 \mid r(e) \in F^0\} = \{e \in E^1 \mid s(e) \in F^0\},\$$

and $r_F = r|_{F^1}$, $s_F = s|_{F^1}$. A directed graph $E = (E^0, E^1, r, s)$ is called a rooted directed tree if there is a $v_0 \in E^0$ with the property that there exists a unique path in E^* from v_0 to every other vertex in E^0 , but no path with length larger than 0 and from v_0 to v_0 .

Let E be a row-finite directed graph, and let A be a C*-algebra. A Cuntz-Krieger E-family in A consists of a set $\{p_v : v \in E^0\}$ of mutually orthogonal projections in A and a set $\{s_e : e \in E^1\}$ of partial isometries in A such that $s_e^*s_e = p_{r(e)}$ for $e \in E^1$ and $p_v = \sum_{\{e:s(e)=v\}} s_e s_e^*$ whenever v is not a sink. Clearly, if each s_e $(e \in E^1)$ is not zero, then the product $s_\mu = s_{\mu_1} s_{\mu_2} \cdots s_{\mu_n}$, where $\mu_i \in E^*(1 \le i \le n)$ and $\mu = \mu_1 \mu_2 \cdots \mu_n$, is non-zero precisely when μ is a path in E^* . Since the range projections $s_e s_e^*(e \in E^1)$ are mutually orthogonal,

we have $s_e^* s_f = 0$ unless e = f for any $e, f \in E^1$. For convenience, since vertices are paths of length 0, we write $s_v = p_v$ for $v \in E^0$.

Let E be a row-finite directed graph. As was shown in [1], there is a C*-algebra C*(E) (called the graph C*-algebra of E) which is generated by a Cuntz–Krieger E-family $\{s_e, p_v\}$ in C*(E) of non-zero elements such that, for any Cuntz–Krieger E-family $\{S_e, P_v\}$ in $B(\mathcal{K})$ for a Hilbert space \mathcal{K} , there is a representation $\pi = \pi_{S,P}$ of A on \mathcal{K} such that $\pi(s_e) = S_e$, $\pi(p_v) = P_v$, for all $e \in E^1$, $v \in E^0$. With the convention that $p_v = s_v = s_v s_v^*$ for $v \in E^0$, the C*-algebra C*(E) is generated as a Banach space by the subset

$$\{s_{\mu}s_{\nu}^*: \mu, \nu \in E^* \text{ and } r(\mu) = r(\nu) \in E^0\}.$$

Let G be a (always assumed to be second countable) locally compact abelian group with dual group Γ (also assumed to be a second countable locally compact abelian group).

DEFINITION 2.1. A map $\omega \colon E^* = \bigcup_{n \geq 0} E^n \to \Gamma$ is called a *labeling map*, if $\omega(\mu) = \omega(e_1) + \omega(e_2) + \cdots + \omega(e_n)$ for $\mu = e_1 e_2 \cdots e_n \in E^n$ and $\omega(\mu) = 1_{\Gamma}$ for $\mu \in E^0$, where 1_{Γ} is the unit of Γ , A map ω will be called *almost proper* if $\omega|_{E^* \setminus E^0}$ is proper with respect to the discrete topology on E^* , *i.e.*, for any compact subset A of Γ , $\omega^{-1}(A) \setminus E^0$ is a finite set.

It is clear that a labeling map ω is determined by $\omega|_{E^1}$, and so is really just a labeling of the edges of the directed graph E by elements of the group Γ . For convenience, we denote $\omega(\mu)$ by ω_{μ} . Clearly, the image $\omega(E^*)$ of ω is a countable set. It is easy to see that if $E^* \setminus E^0$ is an infinite set and ω is almost proper, then Γ is not a compact set, which is equivalent to G not being discrete. If E has a closed path γ and w is almost proper, then $w_{\gamma} \neq 1_{\Gamma}$.

Let $\omega \colon E^* \to \Gamma$ be a labeling map. For any $t \in G$, set $\widetilde{s_e} = (t, \omega_e)s_e$, $\widetilde{p_v} = p_v$. It is easy to see that $(\widetilde{s_e}, \widetilde{p_v})$ is a Cuntz–Krieger *E*-family in $C^*(E)$. We have then an endomorphism $\alpha_t^\omega \colon C^*(E) \to C^*(E)$ with $\alpha_t^\omega(s_e) = \widetilde{s_e}$ and $\alpha_t^\omega(p_v) = \widetilde{p_v}$. Since $\alpha_{-t}^\omega = (\alpha_t^\omega)^{-1}$, α_t^ω is an automorphism of $C^*(E)$, and moreover $(C^*(E), G, \alpha^\omega)$ is a C*-dynamical system. It is easy to see that $\alpha_t^\omega(s_\mu s_\nu^*) = (t, \omega_\mu - \omega_\nu)s_\mu s_\nu^*$ for any $\mu, \nu \in E^*$. We shall call the action α^ω of G on $C^*(E)$ the quasi-free action corresponding to ω .

With $C^*(E)$ viewed as a C^* -algebra on a Hilbert space \mathcal{H} , by the regular representation and the Fourier transformation from $L^2(G,\mathcal{H})$ to $L^2(\Gamma,\mathcal{H})$, we have

$$C^*(E) \times_{\alpha^{\omega}} G = \overline{\operatorname{span}} \{ s_{\mu} f s_{\nu}^* : \mu, \nu \in E^*, r(\mu) = r(\nu) \in E^0, f \in C_0(\Gamma) \}$$

$$\subseteq \mathbf{B}(L^2(\Gamma, \mathcal{H})),$$

where by "span" we mean the linear span, and f acts on $L^2(\Gamma, \mathcal{H})$ by pointwise multiplication. For $f \in L^{\infty}(\Gamma)$, set $\sigma_{\gamma_0}(f)(\gamma) = f(\gamma + \gamma_0)$ (for $\gamma, \gamma_0 \in \Gamma$). Then $(s_{\mu}\eta)(\sigma) = s_{\mu}(\eta(\sigma - \omega_{\mu}))$ (for $\eta \in L^2(\Gamma, \mathcal{H})$), and $fs_{\mu} = s_{\mu}\sigma_{\omega_{\mu}}(f)$ (on $L^2(\Gamma, \mathcal{H})$).

Therefore for $f \in L^{\infty}(\Gamma)$, f commutes with $s_{\mu}s_{\mu}^{*}$ and p_{v} for any $\mu \in E^{*}$ and $v \in E^{0}$.

For any subset S of Γ , we denote by χ_S the characteristic function on Γ of S. Let $\{U_i\}_{i\in \mathbf{I}}$ be a countable open base of Γ such that for any $\gamma\in\omega(E^*)\subseteq\Gamma$, $j\in \mathbf{I}$, $\overline{U_j}$ is compact and $U_j-\gamma\in\{U_i:i\in\mathbf{I}\}$, and let Λ be the directed set consisting of all finite and not empty subsets of \mathbf{I} with the inclusion order. Let $D_0(\Gamma)$ be the C*-subalgebra of $L^\infty(\Gamma)$ generated by all the characteristic functions χ_{U_i} (for all $i\in\mathbf{I}$), and for any $\lambda\in\Lambda$, let $D_\lambda(\Gamma)$ be the C*-subalgebra of $L^\infty(\Gamma)$ generated by all the characteristic functions χ_{U_i} (for all $i\in\lambda$). Let $\mathcal{F}(E)$ be the C*-subalgebra of $\mathbf{B}(L^2(\Gamma,\mathcal{H}))$ generated by the set $\{s_\mu f s_\nu^*: \mu, \nu\in E^*, f\in D_0(\Gamma)\}$, and moreover let $\mathcal{F}_\lambda(E)$ be the C*-subalgebra of $\mathbf{B}(L^2(\Gamma,\mathcal{H}))$ generated by the set $\{s_\mu f s_\nu^*: \mu, \nu\in E^*, f\in D_\lambda(\Gamma)\}$, which is equal to the set

$$\{s_{\mu}fs_{\nu}^*: \mu, \nu \in E^*, r(\mu) = r(\nu) \in E^0, f \in D_{\lambda}(\Gamma)\}.$$

Then we easily have the following relations.

- $C_0(\Gamma) \subseteq D_0(\Gamma)$ and $C^*(E) \times_{\alpha^{\omega}} G \subseteq \mathcal{F}(E)$. If moreover Γ is discrete (equivalently G is compact), $\mathbf{I} = \Gamma$, and $U_i = \{i\}$ for any $i \in \mathbf{I} = \Gamma$, then $C^*(E) \times_{\alpha^{\omega}} G = \mathcal{F}(E)$.
- $D_0(\Gamma)$ is the inductive limit of $D_{\lambda}(\Gamma)$, and $D_0(\Gamma)$ is invariant under the actions of σ_{γ} ($\gamma \in \omega(E^*)$).
- $\mathcal{F}(E)$ is the inductive limit of $\mathcal{F}_{\lambda}(E)$ with the coherent family of morphisms $\phi_{\lambda_1,\lambda_2} \colon \mathcal{F}_{\lambda_1}(E) \to \mathcal{F}_{\lambda_2}(E)$, where $\phi_{\lambda_1,\lambda_2}$ is the inclusion map for $\lambda_1 \subseteq \lambda_2$.

Since $D_{\lambda}(\Gamma)$ is of finite dimension and abelian, with the $\lambda \in \Lambda$ fixed from now on, there are mutually orthogonal minimal projections p_1, p_2, \ldots, p_M in $D_{\lambda}(\Gamma)$ such that $D_{\lambda}(\Gamma)$ consists of all their linear combinations. Let p be the unit of $D_{\lambda}(\Gamma)$. Then p is the characteristic function of $U = \bigcup_{i \in \lambda} U_i$, and is the sum of all p_i . It is easy to see that

$$\mathcal{F}_{\lambda}(E) = \overline{\text{alg-span}} \{ s_{\mu} p_i s_{\nu}^* : \mu, \nu \in E^*, r(\mu) = r(\nu) \in E^0, i = 1, 2, \dots, M \},$$

where for a set X in a topological algebra A, $\overline{\text{alg-span}} X$ is the closed subalgebra of A generated by X, *i.e.*, the smallest closed subalgebra of A that contains X. For the sake of convenience, we let $1 = \chi_{\Gamma}$, which is the identity operator on $L^2(\Gamma, \mathcal{H})$, and let $p_0 = 1 - p$.

Let $\mathcal{A}_{\lambda}(E)$) be the (not closed) algebra generated by

$$\{1\}, \quad D_{\lambda}(\Gamma), \quad \text{and} \quad \{s_{\mu}fs_{\mu}^* : \mu \in E^*, f \in \{1\} \cup D_{\lambda}(\Gamma)\}.$$

Then $\mathcal{A}_{\lambda}(E)$) is a *-subalgebra of $M(\mathcal{F}(E))$). For any $v \in E^0$ and $k \geq 1$, we define a map ρ_{vk} on $\mathcal{A}_{\lambda}(E)$ by

$$\rho_{vk}(x) = \sum_{\substack{s(\mu) = v \\ |\mu| = k}} s_{\mu} x s_{\mu}^* \quad \text{(for } x \in \mathcal{A}_{\lambda}(E)\text{)}.$$

We note that if v is a sink, then $\rho_{vk} = 0$. Since E is row-finite, the right-hand side of the equation above is a finite sum. Then it is not difficult to see that ρ_{vk} is a *-endomorphism on $\mathcal{A}_{\lambda}(E)$.

3. **AF-embedding** Let $T=(T^0,T^1,r,s)$ be a row-finite directed graph, each weakly connected component of which is a rooted (possibly infinite) directed tree, and let $E=(E^0,E^1,r,s)$ be the row-finite directed graph constructed from T by attaching n_v ($0 \le n_v < +\infty$) 1-loops to each vertex v in T. It is clear that the directed graph with one vertex and n 1-loops, whose C*-algebra is the Cuntz algebra, is a special one of these E. In this section we always assume E to be of this form and the labeling map $\omega \colon E^* \to \Gamma$ to be almost proper. It is easy to see that the C*-algebras C*(E) of the graphs under consideration can be simple or non-simple, and also can be purely infinite or finite.

For any $v \in E^0$, $k \ge 1$, $0 \le l \le k$, let

$$E_v^{kl} = \{ \mu = e_1 e_2 \cdots e_k \in E^k : s(\mu) = v \text{ and } e_1, e_2, \dots, e_l \text{ are } 1\text{-loops, but } e_{l+1} \text{ is not a 1-loop} \},$$

$$\rho^l_{vk}(x) = \sum_{\mu \in E^{kl}_n} s_\mu x s^*_\mu \quad \text{(for } x \in \mathcal{A}_\lambda(E)\text{)}.$$

As with ρ_{vk} above, ρ_{vk}^l is still a homomorphism. Let $E_v^k = \{\mu \in E^k : s(\mu) = v\}$. Then $E_v^k = \bigcup_{l=0}^k E_v^{kl}$, and therefore $\rho_{vk} = \sum_{l=0}^k \rho_{vk}^l$. Set $F = \omega^{-1}(\overline{U} - \overline{U}) \backslash E^0$ with $U = \bigcup_{i \in \lambda} U_i$. Since $\overline{U} - \overline{U}$ is compact, and

Set $F = \omega^{-1}(\overline{U} - \overline{U}) \setminus E^0$ with $U = \bigcup_{i \in \lambda} U_i$. Since $\overline{U} - \overline{U}$ is compact, and ω is almost proper, F is finite, and we denote it by $\{\mu_1, \mu_2, \dots, \mu_N\}$ if it is not empty. Then it is easy to check that $ps_{\mu}p = 0$ for any $\mu \in E^* \setminus (E^0 \cup F)$. Set $W = \{s(\mu_1), s(\mu_2), \dots, s(\mu_N)\}$; then (W, \leq_T) is a partially ordered set. Let V be the subset of W consisting of all the maximal elements in (W, \leq_T) , and let

$$m = \max_{1 \le i \le N} |\mu_i| + \max\{|\mu| : \mu \text{ is a path in } T \text{ from a }$$
 vertex in V to a vertex in W .

For $v \in V$, $j \ge 0$, let V(v, j) be all the vertices to which there is a (unique) path μ in T from v with $|\mu| = j$, and let

$$E_F^* = \bigcup_{v \in V} \bigcup_{j=0}^{m-1} \bigcup_{u \in V(v,j)} \{\mu : s(\mu) = u, 1 \le |\mu| \le m - j\}.$$

We note that if $F = \emptyset$, then $E_F^* = \emptyset$. It is clear that for any $\mu_i \in F$, there are $v \in V$ and $j \in \mathbb{N} \cup \{0\}$ with $0 \le j \le m - \max_{1 \le i \le N} |\mu_i|$ such that $s(\mu_i) \in V(v, j)$, and so $\mu_i \in E_F^*$. Since each weakly connected component of T is a rooted directed tree, for any $u, v \in V$ with $u \ne v$, there is no path in E from one vertex in V(u, i) to another vertex in V(v, j) for any $i, j \ge 0$, and also there is no path in E from one vertex in V(v, k) to another vertex in V(v, l) for any k > l. Now we let

$$q = \prod_{\mu \in E_F^*} (1 - s_{\mu} p s_{\mu}^*) p,$$

where p is the unit of $D_{\lambda}(\Gamma)$ for the fixed $\lambda \in \Lambda$ as mentioned above. We note that if $F = \emptyset$, then q = p. Since $1 - \rho_{vk}(p) = \prod_{s(\mu)=v, |\mu|=k} (1 - s_{\mu}ps_{\mu}^*)$,

$$q = \prod_{v \in V} \prod_{j=0}^{m-1} \prod_{u \in V(v,j)} \prod_{k=1}^{m-j} (1 - \rho_{uk}(p))p$$

$$= \prod_{v \in V} \left(\prod_{k=1}^{m} (1 - \rho_{vk}(p)) \prod_{u \in V(v,1)} \prod_{k=1}^{m-1} (1 - \rho_{uk}(p)) \cdots \prod_{u \in V(v,m-1)} (1 - \rho_{u1}(p)) \right) p,$$

which is a projection dominated by p in $\mathcal{A}_{\lambda}(E) \subseteq M(\mathcal{F}(E)) \subseteq \mathbf{B}(L^{2}(\Gamma, \mathcal{H}))$.

LEMMA 3.1. With the notations as above, we have the following.

- (i) q and $\rho_{uk}(q)$ commute with f and p_v for any $u, v \in E^0$, $k \ge 1$ and $f \in D_0(\Gamma)$.
- (ii) For any $\mu, \nu \in E^*$, $(s_{\mu}qs_{\mu}^*)(s_{\nu}qs_{\nu}^*) = \delta_{\mu,\nu}s_{\mu}qs_{\mu}^*$. If moreover $\mu \notin E^0$, $qs_{\mu}q = 0$.

PROOF. (i) is clear from the direct computation, and (ii) is also clear if $\mu, \nu \in E^0$. Since $(s_\mu q s_\mu^*)^2 = s_\mu q s_\mu^*$ by (i), it is enough to prove that for any $\mu \in E^* \backslash E^0$, $q s_\mu q = 0$, which is equivalent to $q s_\mu q s_\mu^* q = 0$. If $\mu \notin F$, then $q s_\mu q s_\mu^* q = q (p s_\mu p) q s_\mu^* q = 0$. If $\mu \in F$, by the discussion above $\mu \in E_F^*$. Therefore $0 \le q s_\mu q s_\mu^* q \le q (s_\mu p s_\mu^*) q = 0$.

LEMMA 3.2. With the notations as above, let $v \in E^0$. Then there is a finite subset $E^*(v)$ of E^* such that $p_v p = \sum_{\mu \in E^*(v)} s_\mu q s_\mu^* p$. Moreover if $v \notin \bigcup_{u \in V, 0 \le j \le m-1} V(u,j)$, $E^*(v) = \{v\}$ and if $v \in \bigcup_{u \in V, 0 \le j \le m-1} V(u,j)$, $E^*(v)$ is a subset of finite set $E_F^* \bigcup (\bigcup_{u \in V, 0 \le j \le m-1} V(u,j))$.

PROOF. By definition, $q = \prod_{u \in V} \prod_{j=0}^{m-1} \prod_{w \in V(u,j)} \prod_{k=1}^{m-j} (1 - \rho_{wk}(p))p$. If $v \notin \bigcup_{u \in V, 0 \le j \le m-1} V(u,j)$, it is clear by direct computation that $p_v q p_v p = \rho_v p$.

If now $v \in V$, then since $\rho_{wk}(p)p_v = p_v \rho_{wk}(p) = \delta_{w,v} \rho_{wk}(p)$,

(3.1)
$$p_v q p_v p = p_v \prod_{k=1}^m (1 - \rho_{vk}(p)) p_v p = \prod_{k=1}^m (p_v - \rho_{vk}(p)) p.$$

Let $1 \le k \le m$, since there is no path from v to any vertex in V(u, j) for any $0 \le j \le m - 1$ and $u \in V$ with $u \ne v$,

$$\rho_{vk}(q)p = \rho_{vk} \left(\prod_{j=0}^{m-1} \prod_{u \in V(v,j)} \prod_{s=1}^{m-j} (1 - \rho_{us}(p))p \right) p$$

$$= \prod_{j=0}^{m-1} \prod_{u \in V(v,j)} \prod_{s=1}^{m-j} (p_v - \rho_{vk}(\rho_{us}(p)))\rho_{vk}(p)p$$
(since ρ_{vk} is a homomorphism)
$$= \prod_{j=0}^{m-1} \prod_{s=1}^{m-j} \prod_{u \in V(v,j)} (p_v - \rho_{vk}(\rho_{us}(p)))\rho_{vk}(p)p .$$

Since $\mu \notin F(\subseteq E_F^*)$ for any $\mu \in E^*$ such that $s(\mu) \in V(v,j)$ (for $v \in V$, $0 \le j \le m-1$) and $|\mu| > m-j$, we have

$$\rho_{vk}(q)p = \prod_{j=0}^{m-1} \prod_{u \in V(v,j)}^{m} (p_v - \rho_{vk}(\rho_{us}(p)))\rho_{vk}(p)p$$

$$(\text{since } \rho_{vk}(\rho_{us}(p))p = 0 \text{ for } s > m - j \text{ and } u \in V(v,j))$$

$$= \prod_{s=1}^{m} \prod_{j=0}^{m-1} \prod_{u \in V(v,j)} (p_v - \rho_{vk}(\rho_{us}(p)))\rho_{vk}(p)p$$

$$= \prod_{s=1}^{m-k} \prod_{j=0}^{m-1} \prod_{u \in V(v,j)} (p_v - \rho_{vk}(\rho_{us}(p)))\rho_{vk}(p)p$$

$$(\text{since } \rho_{vk}(\rho_{us}(p))p = 0 \text{ for } s > m - k \text{ and } u \in V(v,j))$$

$$= \prod_{s=1}^{m-k} \prod_{j=0}^{m-1} \prod_{u \in V(v,j)} \left(p_v - \sum_{l=0}^{k} \rho_{vk}^{l}(\rho_{us}(p))\right)\rho_{vk}(p)p$$

$$= \prod_{s=1}^{m-k} \left(p_v - \sum_{j=0}^{m-1} \sum_{u \in V(v,j)} \sum_{l=0}^{k} \rho_{vk}^{l}(\rho_{us}(p))\right)\rho_{vk}(p)p$$

$$= \prod_{s=1}^{m-k} \left(p_v - \sum_{l=0}^{k} \sum_{j=0}^{m-1} \sum_{u \in V(v,j)} \rho_{vk}^{l}(\rho_{us}(p))\right)\rho_{vk}(p)p.$$

Since

$$\sum_{j=0}^{m-1} \sum_{u \in V(v,j)} \rho_{vk}^k(\rho_{us}(p)) = \rho_{vk}^k(\rho_{vs}(p)) = \sum_{l=k}^{k+s} \rho_{v(k+s)}^l(p),$$

for $1 \le s \le m - k$, and

$$\sum_{j=0}^{m-1} \sum_{u \in V(v,j)} \rho_{vk}^l(\rho_{us}(p)) = \rho_{v(k+s)}^l(p), \quad \text{for } 0 \le l \le k-1,$$

we have

$$\rho_{vk}(q)p = \prod_{s=1}^{m-k} (p_v - \sum_{l=0}^{k+s} \rho_{v(k+s)}^l(p))\rho_{vk}(p)p = \prod_{s=1}^{m-k} (p_v - \rho_{v(k+s)}(p))\rho_{vk}(p)p.$$

(3.2)
$$\rho_{vk}(q)p = \prod_{s=k+1}^{m} (p_v - \rho_{vs}(p))\rho_{vk}(p)p.$$

Therefore

$$p_v p = p_v q p_v p + \sum_{k=1}^{m} \rho_{vk}(q) p$$

by (3.1), (3.2) and direct computation.

If $v \in V(u,i)$ for some $u \in V$, $1 \le i \le m-1$, the discussion is similar except for replacing m with m-i and replacing V(v,j) $(0 \le j \le m-1)$ with $\widetilde{V(v,j)}$ $(0 \le j \le m-i-1)$, where $\widetilde{V(v,j)}$ consists of all vertices to which there is a unique path μ in T from v with $|\mu| = j$. This completes the proof.

Recall that $p_0 = 1 - p$, and p_1, p_2, \ldots, p_M are the mutually orthogonal minimal projections in D_{λ} with $\sum_{i=1}^{M} p_i = p$, which are defined in Section 2. We arbitrarily chose a vertex $\tilde{v} \in E^0$, and let $\widetilde{E_F^*} = E_F^* \cup \{\tilde{v}\}$. Let \mathbf{J} be the finite set of all maps from $\widetilde{E_F^*}$ to the set $\{0, 1, 2, \ldots, M\}$, and $\mathbf{K}_1 = \{(v, \tau) : v \in E^0, \tau \in \mathbf{J}\}$. For any $(v, \tau) \in \mathbf{K}_1$, let

$$q_{(v,\tau)} = q \prod_{\mu \in \widetilde{E_r^*}} \sigma_{w_{\mu}}(p_{\tau(\mu)}) p_v \in \mathbf{B}(L^2(\Gamma, \mathcal{H})).$$

Clearly, $q_{(v,\tau)}$ is a projection with $q_{(v,\tau)} \leq q \leq p$. Let

$$\mathbf{K} = \{(v, \tau) \in \mathbf{K}_1 : q_{(v, \tau)} \neq 0\},\$$

which is clearly a countable (possibly infinite) set.

Lemma 3.3.

- (i) $\{q_{(v,\tau)}\}_{(v,\tau)\in\mathbf{K}}$ are mutually orthogonal projections in $\mathcal{F}(E)$.
- (ii) For any fixed $v \in E^0$,

$$p_v q = \sum_{\tau \in \mathbf{J}} q_{(v,\tau)} = \sum_{\tau : (v,\tau) \in \mathbf{K}} q_{(v,\tau)}.$$

PROOF. (i) It is clear that $\{q_{(v,\tau)}\}_{(v,\tau)\in\mathbf{K}}$ are mutually orthogonal. Since $D_0(\Gamma)$ is invariant under the action of σ_{γ} (for all $\gamma \in \omega(E^*)$),

$$\prod_{\mu \in \widehat{E_F^*}} \sigma_{w_{\mu}}(p_{\tau(\mu)}) p_v p \in \mathcal{F}(E).$$

Therefore, $q_{(v,\tau)} = q \prod_{\mu \in \widetilde{E_F}} \sigma_{w_{\mu}}(p_{\tau(\mu)}) p_v p \in \mathcal{F}(E)$ for $q \in \mathcal{A}_{\lambda}(E) \subseteq M(\mathcal{F}(E))$. (ii)

$$p_v q = p_v q \prod_{\mu \in \widetilde{E_F}} \sigma_{w_\mu} (p_0 + p_1 + \dots p_M)$$

$$= p_v q \sum_{\tau \in \mathbf{J}} \prod_{\mu \in \widetilde{E_F}} \sigma_{w_\mu} (p_{\tau(\mu)}) = \sum_{\tau \in \mathbf{J}} q_{(v,\tau)}.$$

LEMMA 3.4. The C*-algebra \mathcal{F}_{λ} generated by $\{s_{\mu}q_{(v,\tau)}s_{\nu}^*\}_{\mu,\nu\in E^*,(v,\tau)\in \mathbf{K}}$ is isomorphic to $\bigoplus_{(v,\tau)\in \mathbf{K}}\mathcal{K}_{(v,\tau)}$, and hence is an AF subalgebra of $\mathcal{F}(E)$, where $\mathcal{K}_{(v,\tau)}$ is a compact operator algebra over a finite dimensional or a separable infinite dimensional Hilbert space.

PROOF. First, since $q_{(v,\tau)} \in \mathcal{F}(E)$, $s_{\mu}q_{(v,\tau)}s_{\nu}^* = (s_{\mu}p)q_{(v,\tau)}(s_{\nu}p)^* \in \mathcal{F}(E)$. Let (v_1, τ_1) , $(v_2, \tau_2) \in \mathbf{K}$, by Lemma 3.1, for any $\mu_1, \mu_2, \nu_1, \nu_2 \in E^*$,

$$\begin{split} (s_{\mu_1}q_{(v_1,\tau_1)}s_{\nu_1}^*)(s_{\mu_2}q_{(v_2,\tau_2)}s_{\nu_2}^*) &= s_{\mu_1}q_{(v_1,\tau_1)}p_{v_1}(qs_{\nu_1}^*s_{\mu_2}q)q_{(v_2,\tau_2)}s_{\nu_2}^* \\ &= \delta_{\nu_1,\mu_2}\delta_{v_1,r(\nu_1)}\delta_{(v_1,\tau_1),(v_2,\tau_2)}s_{\mu_1}q_{(v_1,\tau_1)}s_{\nu_2}^*. \end{split}$$

Let $(v,\tau) \in \mathbf{K}$. If $r(\mu)$ or $r(\nu)$ is not v, then $s_{\mu}q_{(v,\tau)}s_{\nu}^{*} = 0$. Let $E^{*,v} = \{\mu \in E^{*}: r(\mu) = v\}$, by the computation above, $\{s_{\mu}q_{(v,\tau)}s_{\nu}^{*}\}_{\mu,\nu\in E^{*,v}}$ is a matrix unit, and generates the same C*-algebra, denoted by $\mathcal{F}_{(v,\tau)}$, as $\{s_{\mu}q_{(v,\tau)}s_{\nu}^{*}\}_{\mu,\nu\in E^{*}}$. Moreover $\mathcal{F}_{(v,\tau)}$ is isomorphic to a compact operator algebra $\mathcal{K}_{(v,\tau)}$ over a finite dimensional or separable infinite dimensional Hilbert space. This completes the proof.

LEMMA 3.5. The C^* -algebra $\mathcal{F}_{\lambda}(E)$ is a subalgebra of \mathcal{F}_{λ} .

Proof. Since

$$\mathcal{F}_{\lambda}(E) = \overline{\text{alg-span}} \{ s_{\mu} p_i s_{\nu}^* : \mu, \nu \in E^*, r(\mu) = r(\nu) \in E^0, i = 1, 2, \dots, M \},$$

it is enough to prove for each $1 \le i \le M$, $\mu, \nu \in E^*$ with $r(\mu) = r(\nu)$, $s_{\mu}p_is_{\nu}^* \in \mathcal{F}_{\lambda}$. For any $v \in E^0$, $1 \le i \le M$,

$$\begin{split} p_v p_i &= p_v p p_i = \sum_{\gamma \in E^*(v)} s_\gamma q s_\gamma^* p_i \quad \text{(by Lemma 3.2)} \\ &= \sum_{\gamma \in E^*(v)} s_\gamma \left(p_{r(\gamma)} q \right) s_\gamma^* p_i \\ &= \sum_{\gamma \in E^*(v)} s_\gamma \left(\sum_{\tau \in \mathbf{J}} q_{(r(\gamma),\tau)} \right) s_\gamma^* p_i \quad \text{(by Lemma 3.3(ii))} \\ &= \sum_{\gamma \in E^*(v)} \sum_{\tau \in \mathbf{J}} s_\gamma q_{(r(\gamma),\tau)} \sigma_{\omega_\gamma}(p_i) s_\gamma^* \\ &= \sum_{\gamma \in E^*(v)} \sum_{\tau \in \mathbf{J}} s_\gamma q \prod_{\mu \in E_F^*} \sigma_{w_\mu}(p_{\tau(\mu)}) \sigma_{\omega_\gamma}(p_i) p_{r(\gamma)} s_\gamma^* \\ &= \sum_{\gamma \in E^*(v) \cap E_F^*} \sum_{\tau \in \mathbf{J}: \tau(\gamma) = i} s_\gamma q_{(r(\gamma),\tau)} s_\gamma^* + \sum_{\gamma \in E^*(v) \setminus E_F^*} \sum_{\tau \in \mathbf{J}: \tau(\tilde{v}) = i} s_\gamma q_{(r(\gamma),\tau)} s_\gamma^* \\ &\quad \text{(since } E^*(v) \setminus E_F^* \subseteq E^0, \text{ and } \omega_v = 1_\Gamma \text{ for any } v \in E^0). \end{split}$$

Let $r(\mu) = r(\nu) = v$. Then

$$s_{\mu}p_{i}s_{\nu}^{*} = \sum_{\gamma \in E^{*}(v) \cap E_{F}^{*}} \sum_{\tau \in \mathbf{J}: \tau(\gamma) = i} s_{\mu\gamma}q_{(r(\gamma),\tau)}s_{\nu\gamma}^{*} + \sum_{\gamma \in E^{*}(v) \setminus E_{F}^{*}} \sum_{\tau \in \mathbf{J}: \tau(\tilde{v}) = i} s_{\mu\gamma}q_{(r(\gamma),\tau)}s_{\nu\gamma}^{*},$$

which is in \mathcal{F}_{λ} . This completes the proof.

Theorem 3.6. Let T be a row-finite directed graph, each weakly connected component of which is a rooted (possibly infinite) directed tree. Let E be a row-finite directed graph constructed by attaching n_v ($0 \le n_v < +\infty$) 1-loops to each vertex v in T. Let G be a locally compact abelian group with dual group Γ . Let $\omega \colon E^* \to \Gamma$ be an almost proper labeling map, and let $(C^*(E), G, \alpha^\omega)$ be the C^* -dynamical system with α^ω being the quasi-free action corresponding to ω . Then the crossed product $C^*(E) \times_{\alpha^\omega} G$ can be embedded into an AF algebra. If moreover G is compact, then the crossed product $C^*(E) \times_{\alpha^\omega} G$ itself is an AF algebra.

PROOF. Recall that $\mathcal{F}(E)$ is the inductive limit of $\mathcal{F}_{\lambda}(E)$. By Lemma 3.4 and Lemma 3.5, $\mathcal{F}_{\lambda}(E)$ is contained in the AF subalgebra \mathcal{F}_{λ} of $\mathcal{F}(E)$. Therefore $\mathcal{F}(E)$ is an AF algebra by the local characterization of AF algebras. If moreover G is compact, and so Γ is discrete, we let $\mathbf{I} = \Gamma$, and $U_i = \{i\}$ for any $i \in \mathbf{I} = \Gamma$, then $C^*(E) \times_{\alpha^{\omega}} G = \mathcal{F}(E)$. This completes the proof.

References

- T. Bates, D. Pask, I. Raeburn, and W. Szymański, The C*-algebras of row-finite graphs. New York J. Math. 6 (2000), 307–324.
- N. P. Brown, AF embeddability of crossed products of AF algebras by the integers. J. Funct. Anal. 160 (1998), 150-175.
- J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173–185.
- G. A. Elliott, G. Gong, and L. Li, On the classification of simple inductive limit C*-algebras. II: The isomorphism theorem. Invent. Math. 168 (2007), 249–320.
- X. Fang, Graph C*-algebras and their ideals defined by Cuntz-Krieger family of possibly row-infinite directed graphs. Integral Equations Operator Theory 54 (2006), 301–316.
- 6. _____, The real rank zero property of crossed product. Proc. Amer. Math. Soc. 134 (2006), 3015–3024.
- T. Katsura, AF-embeddability of crossed products of Cuntz algebras. J. Funct. Anal. 196 (2002), 427–442.
- 8. A. Kishmoto, and A. Kumjian, Crossed products of Cuntz algebras by quasi-free automorphisms. In: Operator Algebras and Their Applications. Fields Inst. Commun. 13, American Mathematical Society, Providence, RI, 1997, pp. 173–192.
- M. V. Pimsner, Embedding some transformation group C*-algebras into AF-algebras. Ergodic Theory Dynam. Systems 3 (1983), 613–626.
- ______, Embedding covariance-algebras into AF-algebras. Ergodic Theory Dynam. Systems 19 (1999), 723–740.
- 11. M. V. Pimsner, and D. Voiculescu, Imbedding the irrational rotation C^* -algebras into an AF-algebra. J. Operator Theory 4 (1980), 201–210.
- I. F. Putnam, The C*-algebras associated with minimal homeomorphisms of the Cantor set. Pacific J. Math. 136 (1989), 329–353.
- 13. D. Voiculescu, Almost inductive limit automorphisms and embeddings into AF-algebras. Ergodic Theory Dynam. Systems 6 (1986), 475–484.

Department of Mathematics Tongji University Shanghai 200092, China Email: xfanq@tongji.edu.cn