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AF EMBEDDING OF CROSSED PRODUCTS OF CERTAIN
GRAPH C*-ALGEBRAS BY QUASI-FREE ACTIONS

XIAOCHUN FANG
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ABSTRACT. We introduce the notion of quasi-free action of a locally
compact abelian group on a graph C*-algebra of a row-finite directed graph,
with respect to a labeling of the edges of the graph by elements of the
dual group, which we shall call a labeling map. A sufficient condition
for AF embedding is given: if the row-finite directed graph is constructed
by possibly attaching 1-loops to a row-finite directed graph each weakly
connected component of which is a rooted (possibly infinite) directed tree,
and the labeling map is almost proper, then the crossed product can be
embedded into an AF algebra.

RESUME. On introduit la notion d’action quasi-libre d’'un groupe lo-
calement compact abélien sur la C*-algébre d’un graphe dirigé dont les
rangs sont finis, par rapport & un choix d’étiquettes pour les bords du
graphe par éléments du groupe dual, qu’on appellera une application d’éti-
quette. Une condition suffissante pour que la C*-algebre soit enfoncée dans
une C-algebre AF (c’est-a-dire, limite de C*-algebres de dimesion finie), est
donnée, dans laquelle interviennent et le graphe lui-méme et ’application
d’étiquette.

1. Introduction In the last twenty years important progress has been
made in the classification of amenable C*-algebras. Much is now known about
many special classes of C*-algebras, for example, AH algebras, purely infinite
C*-algebras, the crossed products associated with certain C*-algebra dynamical
systems, quasi-diagonal C*-algebras and so on. It is well known that the ex-
istence of an AF embedding implies quasi-diagonality. Since M. Pimsner and
D. Voiculescu’s AF embedding result for irrational rotation C*-algebras [11],
much effort has been made to embed more general crossed product C*-algebras
into AF algebras (for example see [2], [9]-[12]), which sometimes also implies
some K-theory information. While the C*-algebra one starts with must be em-
beddable if the group acting is discrete, T. Katsura [7] successfully embedded
into AF algebras certain crossed products of the Cuntz algebras O,,, which are
purely infinite simple C*-algebras, by quasi-free continuous actions of a locally
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AF EMBEDDING OF CROSSED PRODUCTS 7

compact abelian group. Meanwhile, the quasi-free actions on O, have been
studied for many years, especially by A. Kishimoto.

In this paper, we introduce the notion of quasi-free action of a locally compact
abelian group G, with dual group T, on the graph C*-algebra C*(E) of a row-
finite directed graph F, corresponding to what will be called a labeling map w
from E* to I'. Keeping the same embedding strategy as in [7], we will prove
that the crossed product of C*(E) by G can be embedded into an AF algebra
for certain special E and w, thus generalizing the main result Theorem 3.8 in
[7] from O, to a much bigger class of C*-algebras C*(FE), which contains both
simple C*-algebras and non-simple C*-algebras, and also contains both purely
infinite C*-algebras and finite C*-algebras.

2. Quasi-free actions and almost proper maps A directed graph E =
(E°, E',r, s) consists of countable (possibly infinite) sets E° of vertices, E' of
edges, and maps r,s: E' — E° identifying the range and source of each edge.
The graph is called row-finite if each vertex emits at most finitely many edges.
We write E™ for the set of paths p = ejeq - - e, with length |u| = n, which are
sequences of edges e; such that r(e;) = s(e;4+1) for 1 <4 < n. Then the maps
r,s extend naturally to E* = |J,,», £ and s extends naturally to the set of
infinite paths u = ejeq---. In particular, we have r(v) = s(v) = v for v € E°.
A path p is called closed if s(u) = r(p). A path g with |u| > 1 is called a loop
if s(u) = r(p) and it has distinct vertices except for s(u) = r(u), and a loop
is called a 1-loop if |u| = 1. A vertex v € E° which emits no edges is called a
sink. The relation <p on E° is defined by v <g w if there is a path u € E* with
s(p) = w and r(pu) = v.

For a directed graph E = (EY, E',r,s), the weakly connected relation ~ in
EY is defined as follows: for v,w € E°, v ~ w if and only if v = w or there
are eq,es,...,e, in E', and vq,vs,...,v, in E° such that vy = v, v, = w,
and {v;i_1,v;} = {r(e;),s(e;)} (i = 1,2,...,n). Clearly, ~ is an equivalence
relation in E°. A directed graph F = (FO, F! rr, sp) is called a weakly connected
component of E if FO is an equivalence class of ~ in E°,

F'={ec E'|r(e) € F'Y = {e € E' | s(e) € F'},

and rg = 7|1, sp = s|p1. A directed graph E = (E°, E',r, s) is called a rooted
directed tree if there is a vy € E° with the property that there exists a unique
path in E* from vy to every other vertex in E°, but no path with length larger
than 0 and from vg to vg.

Let E be a row-finite directed graph, and let A be a C*-algebra. A Cuntz—
Krieger E-family in A consists of a set {p, : v € E°} of mutually orthogonal
projections in A and a set {s. : e € E'} of partial isometries in A such that
S58¢ = Pr(e) for € € E' and p, = E{e:s(e):v} se55 whenever v is not a sink.
Clearly, if each s. (e € E') is not zero, then the product S = SuiSus " S
where p; € E*(1 <i<n)and g = pyps - i, is non-zero precisely when p is a
path in E*. Since the range projections s.s*(e € E!) are mutually orthogonal,
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we have s’s; = 0 unless e = f for any e, f € E'. For convenience, since vertices
are paths of length 0, we write s, = p, for v € E°.

Let E be a row-finite directed graph. As was shown in [1], there is a C*-algebra
C*(E) (called the graph C*-algebra of E) which is generated by a Cuntz—Krieger
E-family {s., p, } in C*(E) of non-zero elements such that, for any Cuntz—Krieger
E-family {Se, P,} in B(K) for a Hilbert space K, there is a representation m =
ng.p of A on K such that 7(s.) = S, n(p,) = Py, for all e € E', v € E°.
With the convention that p, = s, = s,s for v € E?, the C*-algebra C*(E) is
generated as a Banach space by the subset

{885 w,v € E* and () = r(v) € E°}.

Let G be a (always assumed to be second countable) locally compact abelian
group with dual group I' (also assumed to be a second countable locally compact
abelian group).

DEFINITION 2.1. A map w: E* = |J,,»q E" — T is called a labeling map,
if w(p) = wler) +wles) + -+ wle,) for p = erez---e, € E™ and w(u) = 1r
for p € E°, where 1p is the unit of I, A map w will be called almost proper
if w|g«\po is proper with respect to the discrete topology on E*, i.e., for any
compact subset A of ', w™1(A)\E" is a finite set.

It is clear that a labeling map w is determined by w|g1, and so is really just
a labeling of the edges of the directed graph E by elements of the group I'. For
convenience, we denote w(p) by w,,. Clearly, the image w(E*) of w is a countable
set. It is easy to see that if E*\ E? is an infinite set and w is almost proper, then
I" is not a compact set, which is equivalent to G not being discrete. If E has a
closed path v and w is almost proper, then w, # 1r.

Let w: E* — T be a labeling map. For any ¢ € G, set 5, = (t,we)Se, Po = Po-
It is easy to see that (Sc, p,) is a Cuntz—Krieger E-family in C*(E). We have then
an endomorphism oy : C*(E) — C*(E) with o (s.) = S and o (p,) = py. Since
a?, = (o)™, a¥ is an automorphism of C*(E), and moreover (C*(E), G, a*)
is a C*-dynamical system. It is easy to see that oy’(s,s}) = (t,w, —w,)s,s; for
any u,v € E*. We shall call the action o of G on C*(FE) the quasi-free action
corresponding to w.

With C*(E) viewed as a C*-algebra on a Hilbert space H, by the regular
representation and the Fourier transformation from L?(G,H) to L*(T',H), we
have

C*(E) xow G =35pan{s,fs} : p,v € E*,r(p) =r(v) € E°, f € Co(I)}
€ B(L*(T, M),
where by “span” we mean the linear span, and f acts on L?(I",’H) by pointwise

multiplication. For f € L>(T"), set o, (f)(v) = f(v+70) (for 7,7 € T'). Then
(sum)(0) = su(n(o —w,))( for n € L*(I',H)), and fs, = .00, (f)(on L*(I',H)).
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Theregore for f € L>=(T"), f commutes with sus;, and p, for any p € E* and
ve R

For any subset S of I', we denote by xg the characteristic function on I" of S.
Let {U; }ic1 be a countable open base of I' such that for any v € w(E*) CT', j € I
@ is compact and U; —y € {U; : i € I}, and let A be the directed set consisting
of all finite and not empty subsets of I with the inclusion order. Let Dy(T") be the
C*-subalgebra of L>°(T") generated by all the characteristic functions xy, (for all
i € I), and for any A € A, let D)(T") be the C*-subalgebra of L>°(T") generated
by all the characteristic functions xy, (for all ¢ € A). Let F(E) be the C*-
subalgebra of B(L?(I', H)) generated by the set {s, fs} : u,v € E*, f € Do(I')},
and moreover let Fy(E) be the C*-subalgebra of B(L?(T",H)) generated by the
set {sufsp :u,v € E*, f € D\(I')}, which is equal to the set

{sufsi:pveE* r(p)=r(v) e E’ feDyI)}
Then we easily have the following relations.

* Co(T") € Do(T') and C*(E) xow G C F(E). If moreover T is discrete (equiv-
alently G is compact), I = T', and U; = {i} for any i € I = T, then
C*(E) xoqv G = F(E).

* Dy(T) is the inductive limit of Dy (T"), and Dy(T") is invariant under the actions
of oy (v € w(E")).

* F(FE) is the inductive limit of Fy(F) with the coherent family of morphisms
Gai pet Fas (E) — Fr,(E), where ¢y, », is the inclusion map for Ay C As.

Since D (T") is of finite dimension and abelian, with the A € A fixed from now
on, there are mutually orthogonal minimal projections p1,pa,...,pap in Dy(T)
such that Dy(T") consists of all their linear combinations. Let p be the unit of
Dy (T"). Then p is the characteristic function of U = |J,., U;, and is the sum of
all p;. It is easy to see that

FA(E) = alg-span{s,p;si : p,v € E*,r(p) =r(v) € E°i =1,2,..., M},

PEX

where for a set X in a topological algebra A, alg-span X is the closed subalgebra
of A generated by X, i.e., the smallest closed subalgebra of A that contains X.
For the sake of convenience, we let 1 = xr, which is the identity operator on
L3(T',H), and let pg = 1 — p.

Let Ay (E)) be the (not closed) algebra generated by

{1}, Da(l'), and {s.fs,:p€E" fe {1} UD\(T)}.

Then Ay (E)) is a *-subalgebra of M(F(E))). For any v € E® and k > 1, we
define a map p,x on A)(E) by

pok(z) = Z suxs;, (for z € A\(E)).
s(p)=v
|ul=k
We note that if v is a sink, then p,r = 0. Since E is row-finite, the right-hand
side of the equation above is a finite sum. Then it is not difficult to see that p,j
is a *-endomorphism on Ay (E).
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3. AF-embedding Let T = (T° T r s) be a row-finite directed graph,
each weakly connected component of which is a rooted (possibly infinite) directed
tree, and let E = (E° E',r, s) be the row-finite directed graph constructed
from T by attaching n, (0 < n, < +00) 1-loops to each vertex v in T'. It is clear
that the directed graph with one vertex and n 1-loops, whose C*-algebra is the
Cuntz algebra, is a special one of these E. In this section we always assume F
to be of this form and the labeling map w: E* — T" to be almost proper. It is
easy to see that the C*-algebras C*(E) of the graphs under consideration can be
simple or non-simple, and also can be purely infinite or finite.

Foranyv € E°, k>1,0<[ <k, let

Ekl {u—eleg ekEEk:s(,u):vand €1,€9,...,€ are
1-loops, but e;4; is not a 1-1oop},

Pl (x Z suws, (for z € A\(E)).

nEEk

As with p,x above, p!, is still a homomorphism. Let E¥ = {u € E* : s(u) = v}.
Then EF = |J;_, EX, and therefore p,r = S35 ol

Set F = w_l(U UN\E® with U = [, Ui. Since U — U is compact, and
w is almost proper, F' is finite, and we denote it by {p1, 2, ..., un} if it is not
empty. Then it is easy to check that ps,p = 0 for any u € E*\(E° U F). Set
W = {s(u1),s(t2), ..., s(un)}; then (W, <r) is a partially ordered set. Let V'
be the subset of W consisting of all the maximal elements in (W, <7), and let

m = I<néix |p1i] + max{|p| : 1 is a path in T from a
! vertex in V' to a vertex in W}.

ForveV,j>0,let V(v,j) be all the vertices to which there is a (unique) path
pin T from v with || = j, and let

m—1
Er=U U U {r:istw=u1<|u <m—j}

veV j=0 ueV(v,j)

We note that if F' = @, then E}, = &. It is clear that for any p; € F', there are
v €V andj e NU{0} with 0 < j < m—max;<;<n |ui| such that s(u;) € V(v, ),
and so u; € E%. Since each weakly connected component of T is a rooted directed
tree, for any u,v € V with u # v, there is no path in F from one vertex in V' (u, 1)
to another vertex in V' (v, j) for any 4,5 > 0, and also there is no path in E from
one vertex in V (v, k) to another vertex in V(v,!) for any k > I. Now we let

g= ] (0 =supsip,

HEET,
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where p is the unit of D)(T") for the fixed A € A as mentioned above. We note
that if FF = &, then ¢ = p. Since 1 — pyr(p) = HS(M):UJM:]@(I — 8PS},

,_.

m— m—j

I I I0-eue

veV j=0 ueV(v,j) k=1
= (H 1 - ka H H 1 - puk H (1 - pul(p)))pa
veV k=1 uEV(v 1) k=1 u€eV (v,m—1)

which is a projection dominated by p in Ay(E) C M(F(E)) C B(L*(T', H)).

LEMMA 3.1.  With the notations as above, we have the following.

(i) q and pur(q) commute with f and p, for anyu,v € E°, k > 1 and f € Do(T).
(i) For any p,v € E*, (s5,q55)(s0q55) = Ouusuqsy,. If moreover p ¢ E°,
gs,q = 0.

PROOF. (i) is clear from the direct computation, and (ii) is also clear
if p,v € E°. Since (su4sy, )2 = suqsy, by (i), it is enough to prove that for
any u € E*\EO, qsuq = ()7 which is equivalent to gs,gs;q = 0. If p ¢ F,
then ¢s.qsy,q = q(psup)gs;,q = 0. If p € F, by the discussion above p € Ef.
Therefore 0 < gs,qs},q < q(sups},)qg = 0. O

LEMMA 3.2. With the notations as above, let v € EY. Then there is a
finite subset E*(v) o.f E* such that p,p = ZpéE*(v) $uqS;,D- Mov"e.over if v ¢
Uneviocjcm—1 V(u,4), E*(v) = {v} and if v € Uyevocjom—1 V(s 4), E*(v) is
a subset of finite set Ef. \J(Uyev.o<j<m—1 V(1))

PrROOF. By definition, ¢ = [],c H Hwev(u,g) [T (1= pur(p))p -

Ifv ¢ Useviocjcm—i V(u, ), it is clear by direct computation that p,qp,p =
DoD-

If now v € V, then since pyk(P)Pv = DoPuwk(P) = du,vpwi(P),

m m

(3.1) poapp = po [ [ (1 = pur())pop = [ [ (00 = por(0))p-

k=1 k=1
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Let 1 < k < m, since there is no path from v to any vertex in V(u,j) for any
0<j<m-—1and u €V with u # v,

—1 m_]

pvk( )p ka( pus )p
ueV(v,7) s:l

3

<.
I
=)

3
L

m— J

= — Puk pus( )))ka(p)p
u€V(v,5) 521

<.
I
o

(since pyx is a homomorphism)

m—

5

(Po = Pok(Pus (D)) por ()P
(v.9)

I
=]

s=1 ue

<

J

Since p ¢ F(C Ej) for any p € E* such that s(u) € V(v,j) (forv € V,
0<j<m-—1)and |u| >m—j, we have

por(@p= 1] I1 (Do = Pk (pus(P))) pur (P)P

j=0 s=1ueV(v,j)
(Pu

(since puk(pus(p))p =0 for s > m — j and u € V(v,j))

=111 (00 = Pkl )k (0

m—km—1

= (pv Z pvk Pus(P )ka(p)p
s=1 j=0 ueV(v,j) =0
m—k m—1 k

= (pv Z pvk pus )ka(p)p
s=1 7=0 ueV(v,j) I=0
m—Fk k m-—1

=TI (p.-> P (pus (D)) ) ok ()
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Since

m—1 k-+s

Z Z pquk pus(p)) - pvk va ZPU(kJFS

for 1 <s<m—k, and

m—1

7Y Pklpus®) = Phpsg (), for 0<1<k—1,

J=0 ueV(v,j)

we have
m—k k+s m—k
por(@p =[] o =D Ahersy@)por®)p = [ (o = potirs) ()P (P)p.
s=1 =0 s=1
(3:2) por(@p =[] (o= pus())pok(D)p
s=k+1
Therefore

Pop = Puapop + Y _ puk(q)p
k=1

by (3.1), (3.2) and direct computation.

If v € V(u,i) for some v € V, 1 <i <m — 1, the discussion is similar except
for replacing m with m — i and replacing V' (v,j) (0 < j < m — 1) with V (v, )
(0 <j <m—i—1), where V(v,j) consists of all vertices to which there is a
unique path p in T from v with |u| = j. This completes the proof. U

Recall that pg = 1—p, and p1, pa, . . ., py are the mutually orthogonal minimal
projections in D) with sz\i1 p; = p, which are defined in Section 2. We arbi-
trarily chose a vertex o € E°, and let E; = Ej. U {0}. Let J be the finite set of
all maps from E% to the set {0,1,2,..., M}, and Ky = {(v,7) : v € E°, 7 € J}.
For any (v,7) € Ky, let

G,y =0 [ ow,0r)po € BILA (T, H)).
HEE;,

Clearly, q(,,7) is a projection with g, ) < ¢ < p. Let
K= {('UaT) € Kl q(v,T) 75 0}7

which is clearly a countable (possibly infinite) set.
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LEMMA 3.3.

(1) {49, }w,mek are mutually orthogonal projections in F(E).
(ii) For any fized v € E°,

Pvq = ZQ(’U,T) = Z d(v,r)-

TEJ 7:(v,7)EK

ProOF. (i) It is clear that {q(, r)}(,7)ex are mutually orthogonal. Since
Dy (I') is invariant under the action of 0., (for all v € w(E*)),

H 0w, (Pr(u))Pop € F(E).

MEE;‘:

Therefore, q(,,-) = qH#EE Ow, (Pr(u))Pop € F(E) for g € A\(E) C M(F(E)).
(if)

Puq = Puq H Ow, (Po+p1+...pm)

neEy
=pua ) [ ow.rw) =D dwm.
TeJ HGE‘;‘; TEJ U

LEMMA 3.4.  The C*-algebra Fy generated by {suq(vﬁ)slﬁ}#’ueE*7(M)€K is
isomorphic to @(v’T)eK K(v,7y, and hence is an AF subalgebra of F(E), where
K(v,r) s a compact operator algebra over a finite dimensional or a separable
infinite dimensional Hilbert space.

PROOF.  First, since q,,r) € F(E), 8,q(0,7)55 = (5uP)q(v,r)(50p)* € F(E).
Let (v1,71), (v2,72) € K, by Lemma 3.1, for any p1, po, v1,v2 € E*,

(Slh q(vy,m1) 5;1 ) (Sltz A(va,72) 5;2 ) = Sp14(vy,m1)Poy (qS:;l Spo q)q(vz ,T2) 5;2

_ *
= Ouy 1200y (01) 01 m1) s (02172) Spa D(wr 1) S -

Let (v,7) € K. If (i) or 7(v) is not v, then s,q(,,~s; = 0. Let B = {u €
E* :r(u) = v}, by the computation above, {s,q(y,r)5) },,vep=> is a matrix unit,
and generates the same C*-algebra, denoted by F(, r), as {s,q(,)5) tuver
Moreover F(, ) is isomorphic to a compact operator algebra K, ) over a finite
dimensional or separable infinite dimensional Hilbert space. This completes the
proof. O
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LEMMA 3.5.  The C*-algebra F\(E) is a subalgebra of Fy .

PROOF.  Since

Fr(E) = alg-span{s,pis; : p,v € E*,r(p) =r(v) € E°i =1,2,..., M},
it is enough to prove for each 1 < i < M, p,v € E* with r(u) = r(v), sup;is; €
Fi. ForanvaEO, 1<i< M,

PuDi = DuPPi = Z s,yqs,”;pi (by Lemma 3.2)
yEE*(v)

= Y s @)sips
YEE*(v)

> & (Z q(T(V),T)>Si;pi (by Lemma 3.3(ii))

YEE*(v) TeJ

- Z ZS’Y‘]("("/),T)UwW(Pi)S:,

yEE*(v) TET

Z Zsyq H Tw, (Pr(p)) 0w, (Pi)Pr(v) S5

yeE*(v) TEJ HEET,

- Z Z S44(r(7),m) 5y + Z Z Sy 4(r(7),7) 55

YEE*(v)NE}, T€J:T(v)=1 YEE*(v)\Ef T€J:T(D)=1

(since E*(v)\Ex C E°, and w, = 1y for any v € E°).

Let r(u) = 7(v) = v. Then

Supis, = Z Z Suyd(r(v),7) 50y

YEE*(v)NE} T1€J:7(v)=i
+ Z Z Surd(r(+),7) Sy
yeEE*(v)\E} T7€d:T(0)=1

which is in Fy. This completes the proof. O

THEOREM 3.6. Let T be a row-finite directed graph, each weakly connected
component of which is a rooted (possibly infinite) directed tree. Let E be a row-
finite directed graph constructed by attaching n, (0 < n, < 4+00) 1-loops to
each vertex v in T. Let G be a locally compact abelian group with dual group
L. Let w: E* — T be an almost proper labeling map, and let (C*(E), G, a*) be
the C*-dynamical system with o being the quasi-free action corresponding to w.
Then the crossed product C*(E) X 4w G can be embedded into an AF algebra. If
moreover G is compact, then the crossed product C*(E) X o G itself is an AF
algebra.
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PROOF.  Recall that F(FE) is the inductive limit of F)(F). By Lemma 3.4
and Lemma 3.5, F(F) is contained in the AF subalgebra F) of F(E). Therefore
F(FE) is an AF algebra by the local characterization of AF algebras. If moreover
G is compact, and so I is discrete, we let I =T', and U; = {i} for any i e I =T,

then C*(E) X o« G = F(E). This completes the proof. O
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