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Abstract. We introduce the notion of quasi-free action of a locally
compact abelian group on a graph C∗-algebra of a row-finite directed graph,
with respect to a labeling of the edges of the graph by elements of the
dual group, which we shall call a labeling map. A sufficient condition
for AF embedding is given: if the row-finite directed graph is constructed
by possibly attaching 1-loops to a row-finite directed graph each weakly

connected component of which is a rooted (possibly infinite) directed tree,
and the labeling map is almost proper, then the crossed product can be
embedded into an AF algebra.

Résumé. On introduit la notion d’action quasi-libre d’un groupe lo-
calement compact abélien sur la C∗-algèbre d’un graphe dirigé dont les

rangs sont finis, par rapport à un choix d’étiquettes pour les bords du
graphe par éléments du groupe dual, qu’on appellera une application d’éti-
quette. Une condition suffissante pour que la C∗-algèbre soit enfoncée dans
une C-algèbre AF (c’est-à-dire, limite de C∗-algèbres de dimesion finie), est

donnée, dans laquelle interviennent et le graphe lui-même et l’application
d’étiquette.

1. Introduction In the last twenty years important progress has been
made in the classification of amenable C∗-algebras. Much is now known about
many special classes of C∗-algebras, for example, AH algebras, purely infinite
C∗-algebras, the crossed products associated with certain C∗-algebra dynamical
systems, quasi-diagonal C∗-algebras and so on. It is well known that the ex-
istence of an AF embedding implies quasi-diagonality. Since M. Pimsner and
D. Voiculescu’s AF embedding result for irrational rotation C∗-algebras [11],
much effort has been made to embed more general crossed product C∗-algebras
into AF algebras (for example see [2], [9]–[12]), which sometimes also implies
some K-theory information. While the C∗-algebra one starts with must be em-
beddable if the group acting is discrete, T. Katsura [7] successfully embedded
into AF algebras certain crossed products of the Cuntz algebras On, which are
purely infinite simple C∗-algebras, by quasi-free continuous actions of a locally
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compact abelian group. Meanwhile, the quasi-free actions on On have been
studied for many years, especially by A. Kishimoto.

In this paper, we introduce the notion of quasi-free action of a locally compact
abelian group G, with dual group Γ, on the graph C∗-algebra C∗(E) of a row-
finite directed graph E, corresponding to what will be called a labeling map ω
from E∗ to Γ. Keeping the same embedding strategy as in [7], we will prove
that the crossed product of C∗(E) by G can be embedded into an AF algebra
for certain special E and ω, thus generalizing the main result Theorem 3.8 in
[7] from On to a much bigger class of C∗-algebras C∗(E), which contains both
simple C∗-algebras and non-simple C∗-algebras, and also contains both purely
infinite C∗-algebras and finite C∗-algebras.

2. Quasi-free actions and almost proper maps A directed graph E =
(E0, E1, r, s) consists of countable (possibly infinite) sets E0 of vertices, E1 of
edges, and maps r, s : E1 → E0 identifying the range and source of each edge.
The graph is called row-finite if each vertex emits at most finitely many edges.
We write En for the set of paths µ = e1e2 · · · en with length |µ| = n, which are
sequences of edges ei such that r(ei) = s(ei+1) for 1 ≤ i < n. Then the maps
r, s extend naturally to E∗ =

⋃
n≥0 En and s extends naturally to the set of

infinite paths µ = e1e2 · · · . In particular, we have r(v) = s(v) = v for v ∈ E0.
A path µ is called closed if s(µ) = r(µ). A path µ with |µ| ≥ 1 is called a loop
if s(µ) = r(µ) and it has distinct vertices except for s(µ) = r(µ), and a loop µ
is called a 1-loop if |µ| = 1. A vertex v ∈ E0 which emits no edges is called a
sink. The relation ≤E on E0 is defined by v ≤E w if there is a path µ ∈ E∗ with
s(µ) = w and r(µ) = v.

For a directed graph E = (E0, E1, r, s), the weakly connected relation ∼ in
E0 is defined as follows: for v, w ∈ E0, v ∼ w if and only if v = w or there
are e1, e2, . . . , en in E1, and v1, v2, . . . , vn in E0 such that v0 = v, vn = w,
and {vi−1, vi} = {r(ei), s(ei)} (i = 1, 2, . . . , n). Clearly, ∼ is an equivalence
relation in E0. A directed graph F = (F 0, F 1, rF , sF ) is called a weakly connected
component of E if F 0 is an equivalence class of ∼ in E0,

F 1 = {e ∈ E1 | r(e) ∈ F 0} = {e ∈ E1 | s(e) ∈ F 0},

and rF = r|F 1 , sF = s|F 1 . A directed graph E = (E0, E1, r, s) is called a rooted
directed tree if there is a v0 ∈ E0 with the property that there exists a unique
path in E∗ from v0 to every other vertex in E0, but no path with length larger
than 0 and from v0 to v0.

Let E be a row-finite directed graph, and let A be a C∗-algebra. A Cuntz–
Krieger E-family in A consists of a set {pv : v ∈ E0} of mutually orthogonal
projections in A and a set {se : e ∈ E1} of partial isometries in A such that
s∗ese = pr(e) for e ∈ E1 and pv =

∑
{e:s(e)=v} ses

∗
e whenever v is not a sink.

Clearly, if each se (e ∈ E1) is not zero, then the product sµ = sµ1
sµ2

· · · sµn
,

where µi ∈ E∗(1 ≤ i ≤ n) and µ = µ1µ2 · · ·µn, is non-zero precisely when µ is a
path in E∗. Since the range projections ses

∗
e(e ∈ E1) are mutually orthogonal,
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we have s∗esf = 0 unless e = f for any e, f ∈ E1. For convenience, since vertices
are paths of length 0, we write sv = pv for v ∈ E0.

Let E be a row-finite directed graph. As was shown in [1], there is a C∗-algebra
C∗(E) (called the graph C∗-algebra of E) which is generated by a Cuntz–Krieger
E-family {se, pv} in C∗(E) of non-zero elements such that, for any Cuntz–Krieger
E-family {Se, Pv} in B(K) for a Hilbert space K, there is a representation π =
πS,P of A on K such that π(se) = Se, π(pv) = Pv, for all e ∈ E1, v ∈ E0.
With the convention that pv = sv = svs∗v for v ∈ E0, the C∗-algebra C∗(E) is
generated as a Banach space by the subset

{sµs∗ν : µ, ν ∈ E∗ and r(µ) = r(ν) ∈ E0}.

Let G be a (always assumed to be second countable) locally compact abelian
group with dual group Γ (also assumed to be a second countable locally compact
abelian group).

Definition 2.1. A map ω : E∗ =
⋃

n≥0 En → Γ is called a labeling map,
if ω(µ) = ω(e1) + ω(e2) + · · · + ω(en) for µ = e1e2 · · · en ∈ En and ω(µ) = 1Γ

for µ ∈ E0, where 1Γ is the unit of Γ, A map ω will be called almost proper
if ω|E∗\E0 is proper with respect to the discrete topology on E∗, i.e., for any
compact subset A of Γ, ω−1(A)\E0 is a finite set.

It is clear that a labeling map ω is determined by ω|E1 , and so is really just
a labeling of the edges of the directed graph E by elements of the group Γ. For
convenience, we denote ω(µ) by ωµ. Clearly, the image ω(E∗) of ω is a countable
set. It is easy to see that if E∗\E0 is an infinite set and ω is almost proper, then
Γ is not a compact set, which is equivalent to G not being discrete. If E has a
closed path γ and w is almost proper, then wγ 6= 1Γ.

Let ω : E∗ → Γ be a labeling map. For any t ∈ G, set s̃e = (t, ωe)se, p̃v = pv.
It is easy to see that (s̃e, p̃v) is a Cuntz–Krieger E-family in C∗(E). We have then
an endomorphism αω

t : C∗(E) → C∗(E) with αω
t (se) = s̃e and αω

t (pv) = p̃v. Since
αω
−t = (αω

t )−1, αω
t is an automorphism of C∗(E), and moreover (C∗(E), G, αω)

is a C∗-dynamical system. It is easy to see that αω
t (sµs∗ν) = (t, ωµ − ων)sµs∗ν for

any µ, ν ∈ E∗. We shall call the action αω of G on C∗(E) the quasi-free action
corresponding to ω.

With C∗(E) viewed as a C∗-algebra on a Hilbert space H, by the regular
representation and the Fourier transformation from L2(G,H) to L2(Γ,H), we
have

C∗(E) ×αω G = span
{
sµfs∗ν : µ, ν ∈ E∗, r(µ) = r(ν) ∈ E0, f ∈ C0(Γ)

}

⊆ B(L2(Γ,H)),

where by “span” we mean the linear span, and f acts on L2(Γ,H) by pointwise
multiplication. For f ∈ L∞(Γ), set σγ0

(f)(γ) = f(γ + γ0) (for γ, γ0 ∈ Γ). Then
(sµη)(σ) = sµ(η(σ−ωµ))( for η ∈ L2(Γ,H)), and fsµ = sµσωµ

(f)(on L2(Γ,H)).
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Therefore for f ∈ L∞(Γ), f commutes with sµs∗µ and pv for any µ ∈ E∗ and
v ∈ E0.

For any subset S of Γ, we denote by χS the characteristic function on Γ of S.
Let {Ui}i∈I be a countable open base of Γ such that for any γ ∈ ω(E∗) ⊆ Γ, j ∈ I,
Uj is compact and Uj − γ ∈ {Ui : i ∈ I}, and let Λ be the directed set consisting
of all finite and not empty subsets of I with the inclusion order. Let D0(Γ) be the
C∗-subalgebra of L∞(Γ) generated by all the characteristic functions χUi

(for all
i ∈ I), and for any λ ∈ Λ, let Dλ(Γ) be the C∗-subalgebra of L∞(Γ) generated
by all the characteristic functions χUi

(for all i ∈ λ). Let F(E) be the C∗-
subalgebra of B(L2(Γ,H)) generated by the set {sµfs∗ν : µ, ν ∈ E∗, f ∈ D0(Γ)},
and moreover let Fλ(E) be the C∗-subalgebra of B(L2(Γ,H)) generated by the
set {sµfs∗ν : µ, ν ∈ E∗, f ∈ Dλ(Γ)}, which is equal to the set

{sµfs∗ν : µ, ν ∈ E∗, r(µ) = r(ν) ∈ E0, f ∈ Dλ(Γ)}.

Then we easily have the following relations.

• C0(Γ) ⊆ D0(Γ) and C∗(E) ×αω G ⊆ F(E). If moreover Γ is discrete (equiv-
alently G is compact), I = Γ, and Ui = {i} for any i ∈ I = Γ, then
C∗(E) ×αω G = F(E).

• D0(Γ) is the inductive limit of Dλ(Γ), and D0(Γ) is invariant under the actions
of σγ (γ ∈ ω(E∗)).

• F(E) is the inductive limit of Fλ(E) with the coherent family of morphisms
φλ1,λ2

: Fλ1
(E) → Fλ2

(E), where φλ1,λ2
is the inclusion map for λ1 ⊆ λ2.

Since Dλ(Γ) is of finite dimension and abelian, with the λ ∈ Λ fixed from now
on, there are mutually orthogonal minimal projections p1, p2, . . . , pM in Dλ(Γ)
such that Dλ(Γ) consists of all their linear combinations. Let p be the unit of
Dλ(Γ). Then p is the characteristic function of U =

⋃
i∈λ Ui, and is the sum of

all pi. It is easy to see that

Fλ(E) = alg-span{sµpis
∗
ν : µ, ν ∈ E∗, r(µ) = r(ν) ∈ E0, i = 1, 2, . . . ,M},

where for a set X in a topological algebra A, alg-span X is the closed subalgebra
of A generated by X, i.e., the smallest closed subalgebra of A that contains X.
For the sake of convenience, we let 1 = χΓ, which is the identity operator on
L2(Γ,H), and let p0 = 1 − p.

Let Aλ(E)) be the (not closed) algebra generated by

{1}, Dλ(Γ), and {sµfs∗µ : µ ∈ E∗, f ∈ {1} ∪ Dλ(Γ)}.

Then Aλ(E)) is a ∗-subalgebra of M(F(E))). For any v ∈ E0 and k ≥ 1, we
define a map ρvk on Aλ(E) by

ρvk(x) =
∑

s(µ)=v
|µ|=k

sµxs∗µ (for x ∈ Aλ(E)).

We note that if v is a sink, then ρvk = 0. Since E is row-finite, the right-hand
side of the equation above is a finite sum. Then it is not difficult to see that ρvk

is a ∗-endomorphism on Aλ(E).
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3. AF-embedding Let T = (T 0, T 1, r, s) be a row-finite directed graph,
each weakly connected component of which is a rooted (possibly infinite) directed
tree, and let E = (E0, E1, r, s) be the row-finite directed graph constructed
from T by attaching nv (0 ≤ nv < +∞) 1-loops to each vertex v in T . It is clear
that the directed graph with one vertex and n 1-loops, whose C∗-algebra is the
Cuntz algebra, is a special one of these E. In this section we always assume E
to be of this form and the labeling map ω : E∗ → Γ to be almost proper. It is
easy to see that the C∗-algebras C∗(E) of the graphs under consideration can be
simple or non-simple, and also can be purely infinite or finite.

For any v ∈ E0, k ≥ 1, 0 ≤ l ≤ k, let

Ekl
v =

{
µ = e1e2 · · · ek ∈ Ek : s(µ) = v and e1, e2, . . . , el are

1-loops, but el+1 is not a 1-loop
}
,

ρl
vk(x) =

∑

µ∈Ekl
v

sµxs∗µ (for x ∈ Aλ(E)).

As with ρvk above, ρl
vk is still a homomorphism. Let Ek

v = {µ ∈ Ek : s(µ) = v}.

Then Ek
v =

⋃k
l=0 Ekl

v , and therefore ρvk =
∑k

l=0 ρl
vk.

Set F = ω−1(U − U)\E0 with U =
⋃

i∈λ Ui. Since U − U is compact, and
ω is almost proper, F is finite, and we denote it by {µ1, µ2, . . . , µN} if it is not
empty. Then it is easy to check that psµp = 0 for any µ ∈ E∗\(E0 ∪ F ). Set
W = {s(µ1), s(µ2), . . . , s(µN )}; then (W,≤T ) is a partially ordered set. Let V
be the subset of W consisting of all the maximal elements in (W,≤T ), and let

m = max
1≤i≤N

|µi| + max
{
|µ| : µ is a path in T from a

vertex in V to a vertex in W
}
.

For v ∈ V , j ≥ 0, let V (v, j) be all the vertices to which there is a (unique) path
µ in T from v with |µ| = j, and let

E∗
F =

⋃

v∈V

m−1⋃

j=0

⋃

u∈V (v,j)

{µ : s(µ) = u, 1 ≤ |µ| ≤ m − j}.

We note that if F = ∅, then E∗
F = ∅. It is clear that for any µi ∈ F , there are

v ∈ V and j ∈ N∪{0} with 0 ≤ j ≤ m−max1≤i≤N |µi| such that s(µi) ∈ V (v, j),
and so µi ∈ E∗

F . Since each weakly connected component of T is a rooted directed
tree, for any u, v ∈ V with u 6= v, there is no path in E from one vertex in V (u, i)
to another vertex in V (v, j) for any i, j ≥ 0, and also there is no path in E from
one vertex in V (v, k) to another vertex in V (v, l) for any k > l. Now we let

q =
∏

µ∈E∗

F

(1 − sµps∗µ)p,
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where p is the unit of Dλ(Γ) for the fixed λ ∈ Λ as mentioned above. We note
that if F = ∅, then q = p. Since 1 − ρvk(p) =

∏
s(µ)=v,|µ|=k(1 − sµps∗µ),

q =
∏

v∈V

m−1∏

j=0

∏

u∈V (v,j)

m−j∏

k=1

(1 − ρuk(p))p

=
∏

v∈V

( m∏

k=1

(1 − ρvk(p))
∏

u∈V (v,1)

m−1∏

k=1

(1 − ρuk(p)) · · ·
∏

u∈V (v,m−1)

(1 − ρu1(p))
)
p,

which is a projection dominated by p in Aλ(E) ⊆ M(F(E)) ⊆ B(L2(Γ,H)).

Lemma 3.1. With the notations as above, we have the following.

(i) q and ρuk(q) commute with f and pv for any u, v ∈ E0, k ≥ 1 and f ∈ D0(Γ).
(ii) For any µ, ν ∈ E∗, (sµqs∗µ)(sνqs∗ν) = δµ,νsµqs∗µ. If moreover µ /∈ E0,

qsµq = 0.

Proof. (i) is clear from the direct computation, and (ii) is also clear
if µ, ν ∈ E0. Since (sµqs∗µ)2 = sµqs∗µ by (i), it is enough to prove that for
any µ ∈ E∗\E0, qsµq = 0, which is equivalent to qsµqs∗µq = 0. If µ /∈ F ,
then qsµqs∗µq = q(psµp)qs∗µq = 0. If µ ∈ F , by the discussion above µ ∈ E∗

F .
Therefore 0 ≤ qsµqs∗µq ≤ q(sµps∗µ)q = 0. ¤

Lemma 3.2. With the notations as above, let v ∈ E0. Then there is a
finite subset E∗(v) of E∗ such that pvp =

∑
µ∈E∗(v) sµqs∗µp. Moreover if v /∈⋃

u∈V,0≤j≤m−1 V (u, j), E∗(v) = {v} and if v ∈
⋃

u∈V,0≤j≤m−1 V (u, j), E∗(v) is
a subset of finite set E∗

F

⋃
(
⋃

u∈V,0≤j≤m−1 V (u, j)).

Proof. By definition, q =
∏

u∈V

∏m−1
j=0

∏
w∈V (u,j)

∏m−j
k=1 (1 − ρwk(p))p .

If v /∈
⋃

u∈V,0≤j≤m−1 V (u, j), it is clear by direct computation that pvqpvp =
pvp.

If now v ∈ V , then since ρwk(p)pv = pvρwk(p) = δw,vρwk(p),

(3.1) pvqpvp = pv

m∏

k=1

(1 − ρvk(p))pvp =

m∏

k=1

(pv − ρvk(p))p.
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Let 1 ≤ k ≤ m, since there is no path from v to any vertex in V (u, j) for any
0 ≤ j ≤ m − 1 and u ∈ V with u 6= v,

ρvk(q)p = ρvk

(m−1∏

j=0

∏

u∈V (v,j)

m−j∏

s=1

(1 − ρus(p))p
)
p

=

m−1∏

j=0

∏

u∈V (v,j)

m−j∏

s=1

(pv − ρvk(ρus(p)))ρvk(p)p

(since ρvk is a homomorphism)

=

m−1∏

j=0

m−j∏

s=1

∏

u∈V (v,j)

(pv − ρvk(ρus(p)))ρvk(p)p .

Since µ /∈ F (⊆ E∗
F ) for any µ ∈ E∗ such that s(µ) ∈ V (v, j) (for v ∈ V ,

0 ≤ j ≤ m − 1) and |µ| > m − j, we have

ρvk(q)p =

m−1∏

j=0

m∏

s=1

∏

u∈V (v,j)

(pv − ρvk(ρus(p)))ρvk(p)p

(since ρvk(ρus(p))p = 0 for s > m − j and u ∈ V (v, j))

=

m∏

s=1

m−1∏

j=0

∏

u∈V (v,j)

(pv − ρvk(ρus(p)))ρvk(p)p

=

m−k∏

s=1

m−1∏

j=0

∏

u∈V (v,j)

(pv − ρvk(ρus(p)))ρvk(p)p

(since ρvk(ρus(p))p = 0 for s > m − k and u ∈ V (v, j))

=
m−k∏

s=1

m−1∏

j=0

∏

u∈V (v,j)

(
pv −

k∑

l=0

ρl
vk(ρus(p))

)
ρvk(p)p

=

m−k∏

s=1

(
pv −

m−1∑

j=0

∑

u∈V (v,j)

k∑

l=0

ρl
vk(ρus(p))

)
ρvk(p)p

=

m−k∏

s=1

(
pv −

k∑

l=0

m−1∑

j=0

∑

u∈V (v,j)

ρl
vk(ρus(p))

)
ρvk(p)p.
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Since

m−1∑

j=0

∑

u∈V (v,j)

ρk
vk(ρus(p)) = ρk

vk(ρvs(p)) =
k+s∑

l=k

ρl
v(k+s)(p),

for 1 ≤ s ≤ m − k, and

m−1∑

j=0

∑

u∈V (v,j)

ρl
vk(ρus(p)) = ρl

v(k+s)(p), for 0 ≤ l ≤ k − 1,

we have

ρvk(q)p =

m−k∏

s=1

(pv −

k+s∑

l=0

ρl
v(k+s)(p))ρvk(p)p =

m−k∏

s=1

(pv − ρv(k+s)(p))ρvk(p)p.

(3.2) ρvk(q)p =
m∏

s=k+1

(pv − ρvs(p))ρvk(p)p .

Therefore

pvp = pvqpvp +

m∑

k=1

ρvk(q)p

by (3.1), (3.2) and direct computation.
If v ∈ V (u, i) for some u ∈ V , 1 ≤ i ≤ m − 1, the discussion is similar except

for replacing m with m − i and replacing V (v, j) (0 ≤ j ≤ m − 1) with Ṽ (v, j)

(0 ≤ j ≤ m − i − 1), where Ṽ (v, j) consists of all vertices to which there is a
unique path µ in T from v with |µ| = j. This completes the proof. ¤

Recall that p0 = 1−p, and p1, p2, . . . , pM are the mutually orthogonal minimal
projections in Dλ with

∑M
i=1 pi = p, which are defined in Section 2. We arbi-

trarily chose a vertex ṽ ∈ E0, and let Ẽ∗
F = E∗

F ∪ {ṽ}. Let J be the finite set of

all maps from Ẽ∗
F to the set {0, 1, 2, . . . ,M}, and K1 = {(v, τ) : v ∈ E0, τ ∈ J}.

For any (v, τ) ∈ K1, let

q(v,τ) = q
∏

µ∈gE∗

F

σwµ
(pτ(µ))pv ∈ B(L2(Γ,H)).

Clearly, q(v,τ) is a projection with q(v,τ) ≤ q ≤ p. Let

K = {(v, τ) ∈ K1 : q(v,τ) 6= 0},

which is clearly a countable (possibly infinite) set.
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Lemma 3.3.

(i) {q(v,τ)}(v,τ)∈K are mutually orthogonal projections in F(E).
(ii) For any fixed v ∈ E0,

pvq =
∑

τ∈J

q(v,τ) =
∑

τ :(v,τ)∈K

q(v,τ).

Proof. (i) It is clear that {q(v,τ)}(v,τ)∈K are mutually orthogonal. Since
D0(Γ) is invariant under the action of σγ (for all γ ∈ ω(E∗)),

∏

µ∈gE∗

F

σwµ
(pτ(µ))pvp ∈ F(E).

Therefore, q(v,τ) = q
∏

µ∈gE∗

F

σwµ
(pτ(µ))pvp ∈ F(E) for q ∈ Aλ(E) ⊆ M(F(E)).

(ii)

pvq = pvq
∏

µ∈gE∗

F

σwµ
(p0 + p1 + . . . pM )

= pvq
∑

τ∈J

∏

µ∈gE∗

F

σwµ
(pτ(µ)) =

∑

τ∈J

q(v,τ).
¤

Lemma 3.4. The C∗-algebra Fλ generated by {sµq(v,τ)s
∗
ν}µ,ν∈E∗,(v,τ)∈K is

isomorphic to
⊕

(v,τ)∈K
K(v,τ), and hence is an AF subalgebra of F(E), where

K(v,τ) is a compact operator algebra over a finite dimensional or a separable
infinite dimensional Hilbert space.

Proof. First, since q(v,τ) ∈ F(E), sµq(v,τ)s
∗
ν = (sµp)q(v,τ)(sνp)∗ ∈ F(E).

Let (v1, τ1), (v2, τ2) ∈ K, by Lemma 3.1, for any µ1, µ2, ν1, ν2 ∈ E∗,

(sµ1
q(v1,τ1)s

∗
ν1

)(sµ2
q(v2,τ2)s

∗
ν2

) = sµ1
q(v1,τ1)pv1

(qs∗ν1
sµ2

q)q(v2,τ2)s
∗
ν2

= δν1,µ2
δv1,r(ν1)δ(v1,τ1),(v2,τ2)sµ1

q(v1,τ1)s
∗
ν2

.

Let (v, τ) ∈ K. If r(µ) or r(ν) is not v, then sµq(v,τ)s
∗
ν = 0. Let E∗,v = {µ ∈

E∗ : r(µ) = v}, by the computation above, {sµq(v,τ)s
∗
ν}µ,ν∈E∗,v is a matrix unit,

and generates the same C∗-algebra, denoted by F(v,τ), as {sµq(v,τ)s
∗
ν}µ,ν∈E∗ .

Moreover F(v,τ) is isomorphic to a compact operator algebra K(v,τ) over a finite
dimensional or separable infinite dimensional Hilbert space. This completes the
proof. ¤
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Lemma 3.5. The C∗-algebra Fλ(E) is a subalgebra of Fλ .

Proof. Since

Fλ(E) = alg-span{sµpis
∗
ν : µ, ν ∈ E∗, r(µ) = r(ν) ∈ E0, i = 1, 2, . . . ,M},

it is enough to prove for each 1 ≤ i ≤ M , µ, ν ∈ E∗ with r(µ) = r(ν), sµpis
∗
ν ∈

Fλ. For any v ∈ E0, 1 ≤ i ≤ M ,

pvpi = pvppi =
∑

γ∈E∗(v)

sγqs∗γpi (by Lemma 3.2)

=
∑

γ∈E∗(v)

sγ(pr(γ)q)s
∗
γpi

=
∑

γ∈E∗(v)

sγ

(∑

τ∈J

q(r(γ),τ)

)
s∗γpi (by Lemma 3.3(ii))

=
∑

γ∈E∗(v)

∑

τ∈J

sγq(r(γ),τ)σωγ
(pi)s

∗
γ

=
∑

γ∈E∗(v)

∑

τ∈J

sγq
∏

µ∈E∗

F

σwµ
(pτ(µ))σωγ

(pi)pr(γ)s
∗
γ

=
∑

γ∈E∗(v)∩E∗

F

∑

τ∈J:τ(γ)=i

sγq(r(γ),τ)s
∗
γ +

∑

γ∈E∗(v)\E∗

F

∑

τ∈J:τ(ṽ)=i

sγq(r(γ),τ)s
∗
γ

(since E∗(v)\E∗
F ⊆ E0, and ωv = 1Γ for any v ∈ E0).

Let r(µ) = r(ν) = v. Then

sµpis
∗
ν =

∑

γ∈E∗(v)∩E∗

F

∑

τ∈J:τ(γ)=i

sµγq(r(γ),τ)s
∗
νγ

+
∑

γ∈E∗(v)\E∗

F

∑

τ∈J:τ(ṽ)=i

sµγq(r(γ),τ)s
∗
νγ ,

which is in Fλ. This completes the proof. ¤

Theorem 3.6. Let T be a row-finite directed graph, each weakly connected
component of which is a rooted (possibly infinite) directed tree. Let E be a row-
finite directed graph constructed by attaching nv (0 ≤ nv < +∞) 1-loops to
each vertex v in T . Let G be a locally compact abelian group with dual group
Γ. Let ω : E∗ → Γ be an almost proper labeling map, and let (C∗(E), G, αω) be
the C∗-dynamical system with αω being the quasi-free action corresponding to ω.
Then the crossed product C∗(E) ×αω G can be embedded into an AF algebra. If
moreover G is compact, then the crossed product C∗(E) ×αω G itself is an AF
algebra.
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Proof. Recall that F(E) is the inductive limit of Fλ(E). By Lemma 3.4
and Lemma 3.5, Fλ(E) is contained in the AF subalgebra Fλ of F(E). Therefore
F(E) is an AF algebra by the local characterization of AF algebras. If moreover
G is compact, and so Γ is discrete, we let I = Γ, and Ui = {i} for any i ∈ I = Γ,
then C∗(E) ×αω G = F(E). This completes the proof. ¤
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