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THE SCALING LIMIT OF FOMIN’S IDENTITY

FOR TWO PATHS IN THE PLANE

MICHAEL J. KOZDRON
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Résumé. Nous passons en revue de la recherche récemment réalisée
qui établit la limite de l’identité de Fomin pour la marche aléatoire à
boucles effacées sur Z2 en termes du processus Schramm–Loewner (où SLE
pour Schramm–Loewner evolution) avec paramètre 2. Dans le cas de deux

chemins, nous fournissons une preuve simplifiée de l’identité pour la marche
aléatoire à boucles effacées et la marche aléatoire simple, et prouvons or-
donner que l’identité correspondante se tient pour SLE2 et le mouvement

brownien. Nous incluons également une brève introduction au processus
Schramm–Loewner et une discussion du rapport entre SLE2 et la marche
aléatoire à boucles effacées.

1. Introduction. The primary purpose of this paper is to review some
recently completed research that has established the scaling limit of Fomin’s
identity for loop-erased random walk on Z

2 in terms of the chordal Schramm–
Loewner evolution (SLE) with parameter κ = 2. For the complete details, in-
cluding extensions of these results, consult the original papers [4], [6], [7] and [8].
We have decided to discuss the case of n = 2 paths exclusively. This choice is
partly pedagogical, and it is our hope that the reader will find the particular
special cases discussed in the present work to be useful in understanding the
general results of the original papers. Furthermore, explicit calculations can be
performed in the case of n = 2 paths, and this choice allows us to present simpli-
fied proofs of these theorems in this case. It must also be noted that we shall only
discuss two-dimensional results at present. Therefore, we will consider R2 ∼= C,
and will write any of w, x, y, z to denote points in C. A simple random walk on
Z
2 will be denoted by Sj , j = 0, 1, 2, . . . , and Bt, t ≥ 0, will denote a complex

Brownian motion. When a one-dimensional Brownian motion is needed, we will
write it as {Wt, t ≥ 0}.

It is assumed that the reader has an understanding of random walk and Brow-
nian motion. Although some familiarity with SLE would be helpful, it is not
necessary, and in order for this paper to be as widely accessible as possible,
Section 4 provides a brief introduction to SLE and discusses the relationship be-
tween SLE2 and loop-erased random walk. The outline of the remainder of the
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paper is as follows. Section 2 provides some motivation for this paper. Section 3
discusses only discrete results including a review of the definition of loop-erased
random walk and Fomin’s identity. Section 5 reviews the excursion Poisson ker-
nel, and finally in Section 6 we compute the non-intersection probability of SLE2

and Brownian motion, and explain how it is the natural continuous analogue of
Fomin’s identity.

2. Motivation. This paper (and [8] more generally) is the result of the
answer to the following question. Suppose that x and y are real numbers with
0 < x < y < ∞. What is the probability that a chordal SLE2 from 0 to
∞ in the upper half plane H and a Brownian motion excursion from x to y
in H do not intersect? (See Section 4 for a brief introduction to SLE and a
discussion of the relationship between SLE2 and loop-erased random walk.) The
motivation for asking this question is that the probability under consideration is
the natural continuous analogue of the probability that arises in Fomin’s identity.
(See Section 3 for a review of loop-erased random walk and Fomin’s identity.) In
fact, Fomin’s original identity [4] expressed a particular “crossing probability”
for loop-erased random walk in terms of the determinant of the hitting matrix
for simple random walk, and in that work he conjectured that this identity holds
for continuous processes:

“. . . we do not need the notion of loop-erased Brownian motion. Instead,
we discretize the model, compute the probability, and then pass to the
limit.”

It is well known that Brownian motion is the scaling limit of random walk. In [7],
the technical details necessary to complete this conjectured program were first
carried out, and the scaling limit of the determinant of the hitting matrix for
simple random walk was shown to be the determinant of the hitting matrix
for Brownian motion. Since the scaling limit of loop-erased random walk is
known [11] to be SLE2, it is natural to ask if the scaling limit of the “crossing
probability” for loop-erased random walk can be given directly in terms of an
SLE2 probability, and if that SLE2 probability is equal to the determinant of
the hitting matrix for Brownian motion. The answer is in the affirmative as
Theorem 6.1 shows explicitly in the case of two paths.

Indeed no notion of loop-erased Brownian motion was needed! It should be
noted that although the notion of loop-erased Brownian motion is not well-
defined, there is a sense in which SLE2 can be thought of as Brownian motion
without loops. This description is given in terms of the Brownian loop soup:
adding Brownian loops to an SLE2 path is one way to produce a Brownian
motion. This result is not relevant for the present paper, but the interested
reader can consult [12] and [13] for more precise statements.
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3. Fomin’s identity for loop-erased random walk. Suppose that A ⊂
Z
2. We define the (outer) boundary of A to be

∂A := {z ∈ Z
2 \A : dist(z,A) = 1},

and we say that A is simply connected if both A and Z
2 \ A are non-empty

and connected. Let A denote the collection of simply connected subsets A of
Z
2 containing the origin. Let Sj , j = 0, 1, . . . , denote two-dimensional simple

random walk, and suppose that τA := inf{j ≥ 1 : Sj /∈ A}. We say that a path
ω := [ω0, . . . , ωk] is a discrete excursion in A if ω0, ωk ∈ ∂A; ω1, . . . , ωk−1 ∈ A;
and |ωj − ωj−1| = 1, j = 1, . . . , k. The length of ω is |ω| = k; it is implicit that
2 ≤ k < ∞. Finally, we write KA for the set of discrete excursions in A, and
define the simple random walk excursion measure on A to be the measure on
KA which gives mass 4−k to each discrete excursion in A of length k. Note that
the excursion measure of ω is the probability that the first k steps of a simple
random walk starting at ω0 are the same as ω. If ω is a discrete excursion in
A, let p(ω) := Pω0{Sj = ωj , j = 0, . . . , |ω|}. If z ∈ A, y ∈ ∂A, let the discrete
Poisson kernel hA(z, y) be the probability that a simple random walk starting at
z leaves A at y; that is, hA(z, y) := Pz{SτA = y}. If x, y ∈ ∂A, let the discrete
excursion Poisson kernel h∂A(x, y) be the probability that a simple random walk
starting at x takes its first step into A and then leaves A at y. That is,

(3.1) h∂A(x, y) := Px{SτA = y, S1 ∈ A} =
∑

ω∈KA(x,y)

p(ω)

where we write KA(x, y) to denote the set of discrete excursions in A with end-
points x, y ∈ ∂A.

We now briefly review the definition of the loop-erased random walk; see [9,
Chapter 7] for more details. Since simple random walk on Z

2 is recurrent, it
is not possible to construct loop-erased random walk by erasing loops from an
infinite walk. However, the following loop-erasing procedure makes perfect sense
since it assigns to each finite simple random walk path a self-avoiding path. Let
S := [S0, S1, . . . , Sk] be a simple random walk path of length k. We construct
L(S), the loop-erased part of S, recursively as follows. If S is already self-
avoiding, set L(S) := S. Otherwise, let s0 := max{j : Sj = S0}, and for
i > 0, let si := max{j : Sj = Ssi−1+1}. If we let m := min{i : si = k}, then
L(S) := [Ss0 , Ss1 , . . . , Ssm ].

Suppose that A ∈ A and x1, . . . , xn, yn, . . . , y1 are distinct points in ∂A,
ordered counterclockwise. For i = 1, . . . , n, let Li := L(Si) be the loop erasure
of the path [Si

0 = xi, Si
1, . . . , S

i
τ i
A

], and let C := C(x1, . . . , xn, yn, . . . , y1;A) be

the event that both

Si
τ i
A
= yi, i = 1, . . . , n,(3.2)

and

Si[0, τ iA] ∩ (L1 ∪ · · · ∪ Li−1) = ∅, i = 2, . . . , n.(3.3)
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In 2001, S. Fomin [4] proved the following identity which relates the determi-
nant of a matrix of simple random walk probabilities to a “crossing probability”
for loop-erased random walk.

Theorem 3.1 (Fomin’s Identity). If C is the event defined above, and

h∂A(x,y) :=







h∂A(x
1, y1) · · · h∂A(x

1, yn)
...

. . .
...

h∂A(x
n, y1) · · · h∂A(x

n, yn)







where x := (x1, . . . , xn), y := (y1, . . . , yn), then P(C) = deth∂A(x,y).

Remark 3.2. We note that the conditional probability that (3.3) holds
given (3.2) holds is

(3.4) det
[h∂A(x

i, yℓ)

h∂A(xi, yi)

]

1≤i,ℓ≤n
=

deth∂A(x,y)
n
∏

i=1

h∂A(xi, yi)
.

The first approach taken to derive a scaling limit of Fomin’s identity and estab-
lish the conjecture given in Section 2 was to show that (3.4) converged to the
appropriate Brownian motion quantity as the lattice spacing δ → 0. This was
first accomplished in [7], and is briefly discussed at the end of Section 5.

We end this section with the specific case of two paths for which a simpler
proof can be given by “counting sample paths”.

Theorem 3.3 (Fomin’s Identity for LERW (version for two paths)).
Suppose that A ∈ A and x1, x2, y2, y1 are four points ordered counterclockwise
around ∂A. If L1 is the path of a loop-erased random walk excursion from x1 to
y1, and S2 is the path of a simple random walk excursion from x2 to y2, then

(3.5) P{L1 ∩ S2 = ∅} =
deth∂A(x,y)

h∂A(x1, y1)h∂A(x2, y2)
.

Proof. As noted earlier, (3.5) represents the conditional probability that
the loop-erasure of a first simple random walk excursion starting from x1 and
a second simple random walk excursion starting from x2 do not intersect given
that the first simple random walk exits at y1 and the second simple random walk
exits at y2. Therefore, the key step in proving this theorem is to show that if

q := q(x1, x2, y2, y1;A) :=
∑

p(ω1)p(ω2)

where the sum is over all ω1 ∈ KA(x
1, y1) and ω2 ∈ KA(x

2, y2) with L(ω1)∩ω2 =
∅, then q = deth∂A(x,y). We know from (3.1) that

h∂A(x
i, yj) :=

∑

ωij∈KA(xi,yj)

p(ωij),
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and so we have
(3.6)

det

[

h∂A(x
1, y1) h∂A(x

2, y1)
h∂A(x

1, y2) h∂A(x
2, y2)

]

=
∑

ω11

∑

ω22

p(ω11)p(ω22)−
∑

ω12

∑

ω21

p(ω12)p(ω21).

Let Γ1 denote the set of ordered pairs (ω11, ω22) ∈ KA(x
1, y1)×KA(x

2, y2) such
that L(ω11) ∩ ω22 6= ∅ so that

q =
∑

(ω11,ω22)∈KA(x1,y1)×KA(x2,y2)\Γ1

p(ω11)p(ω22).

Let Γ2 denote the set of ordered pairs (ω12, ω21) ∈ KA(x
1, y2)×KA(x

2, y1), and
note that L(ω12)∩ω21 6= ∅ for every (ω12, ω21) ∈ KA(x

1, y2)×KA(x
2, y1). Thus,

we can express (3.6) as

det

[

h∂A(x
1, y1) h∂A(x

2, y1)
h∂A(x

1, y2) h∂A(x
2, y2)

]

= q +
∑

Γ1

p(ω11)p(ω22)−
∑

Γ2

p(ω12)p(ω21).

We will now show that there exists a one-to-one correspondence between Γ1 and
Γ2, denoted by (ω11, ω22) ↔ (Λω11,Λω22), with p(ω11)p(ω22) = p(Λω11)p(Λω22).
This will imply that

(3.7)
∑

Γ1

p(ω11)p(ω22) =
∑

Γ2

p(ω12)p(ω21)

from which q = deth∂A(x,y) will follow. To demonstrate the correspondence,
the basic idea is to note that if ω11 ∈ KA(x

1, y1) and ω22 ∈ KA(x
2, y2) sat-

isfy L(ω11) ∩ ω22 6= ∅, then there is a first site v (sometimes called a pivot
point) on L(ω11) which is visited by the path ω22. Now, consider the last time
that ω11 visits v and the last time that ω22 visits v. Interchanging the tails
of the two excursions from the times of their respective last visits to v pro-
duces two new excursions—one from x1 to y2 (written Λω11) and one from x2

to y1 (written Λω22). Since the same sites are occupied in the new excursions
as in the original excursions, we see that p(ω11)p(ω22) = p(Λω11)p(Λω22). For-
mally, we denote the two excursions (ω11, ω22) ∈ Γ1 by w11 := [x1, z1, . . . , zm, y

1]
and ω22 := [x2, w1, . . . , wk, y

2], and we write L(ω11) = [x1, ẑ1, . . . , ẑi, y
1]. Since

L(ω11) ∩ ω22 6= ∅, we set j1 to be the smallest positive integer j such that
ẑj ∈ {w1, . . . , wk} and ℓ1 to be the largest integer ℓ such that zℓ = ẑj1 . Fi-
nally, let ℓ2 be the largest integer ℓ such that wℓ = ẑj1 . We now define Λω11 :=
[x1, z1, . . . , zℓ1 , wℓ2+1, . . . , wk, y

2] and Λω22 := [x2, w1, . . . , wℓ2 , zℓ1+1, . . . , zm, y
1]

so that (Λω11,Λω22) ∈ Γ2 and p(ω11)p(ω22) = p(Λω11)p(Λω22). Conversely, if
we consider (ω12, ω21) ∈ Γ2, then necessarily L(ω12) ∩ ω21 6= ∅. Interchang-
ing the tails of the two excursions in the same manner just described there-
fore produces two new excursions—one from x1 to y1 (written Λ−1ω12) and
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one from x2 to y2 (written Λ−1ω21)—such that L(Λ−1ω12) ∩ Λ−1ω21 6= ∅ and
p(ω12)p(ω21) = p(Λ−1ω12)p(Λ−1ω21). This establishes the bijection between Γ1

and Γ2, establishes (3.7) from which q = deth∂A(x,y) follows, and completes
the proof of the theorem. �

Remark 3.4. Fomin’s identity (Theorem 3.1) as originally proved [4] holds
more generally for stationary Markov processes on discrete state spaces. The
proof we present here of Theorem 3.3 for the special case of two paths in Z

2

holds with only minor modifications for two paths in Z
d.

4. A brief introduction to SLE. The Schramm–Loewner evolution
(SLE) is a one-parameter family of random growth processes introduced in 1999
by O. Schramm [15] while considering possible scaling limits of loop-erased ran-
dom walk. Since then a number of introductions to SLE have been written
for a range of audiences. These include lecture notes by I. Gruzberg [5] and
W. Werner [16], and a book by G. Lawler [10]. The purpose of this section (as
the title suggests) is to provide a brief introduction. At times we will be a little
casual sacrificing precision for intuition; the interested reader can find precise
details in [10].

Let H = {z ∈ C : ℑ(z) > 0} denote the upper half plane, and consider a simple
(non-self-intersecting) curve γ : [0,∞) → H with γ(0) = 0 and γ(0,∞) ⊂ H. For
every fixed t ≥ 0, the slit plane H t := H \ γ(0, t] is simply connected and
so by the Riemann mapping theorem, there exists a conformal transformation
gt : H t → H. The map gt is not unique, but we choose the unique one satisfying
the hydrodynamic normalization gt(z) − z → 0 as z → ∞. It then follows that
gt can be expanded as

(4.1) gt(z) = z +
b(t)

z
+O(|z|−2), z → ∞,

where b(t) = hcap(γ(0, t]) is the half-plane capacity of γ up to time t. The half-
plane capacity is related to how likely a Brownian motion starting from infinity
is to hit the curve before hitting the real line R. If Bt is a two-dimensional
Brownian motion, then

hcap
(

γ(0, t]
)

:= lim
y→∞

yE[ℑ(Bτ )|B0 = iy]

where τ is the first time that the Brownian motion hits either γ(0, t] or R.
For a slit plane such as H t = H \ γ(0, t], the map gt can be extended con-

tinuously to the boundary point γ(t) of ∂H t. With no additional assumptions
on the simple curve γ, it can be shown that there is a unique point Ut ∈ R for
all t ≥ 0 with Ut := gt

(

γ(t)
)

and that the function t 7→ Ut is continuous. The
notation is illustrated in Figure 1.

The evolution of the curve γ(t), or more precisely, the evolution of the con-
formal transformations gt : H t → H, can be described by a differential equation
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Figure 1 : The curve γ : [0,∞) → H and the map gt : H t → H.

involving Ut. This is due to C. Loewner who showed in 1923 that if γ is a curve
as above such that its half-plane capacity b(t) is C1 and b(t) → ∞ as t → ∞,
then for z ∈ H with z /∈ γ[0,∞), the conformal transformations {gt(z), t ≥ 0}
satisfy the partial differential equation

(4.2)
∂

∂t
gt(z) =

ḃ(t)

gt(z)− Ut

, g0(z) = z.

Note that if b(t) ∈ C1 is an increasing function, then we can reparametrize the
curve γ so that hcap

(

γ(0, t]
)

= b(t). This is the so-called parametrization by
capacity and will be convenient for our purposes.

The obvious thing to do now is to start with a continuous function t 7→ Ut from
[0,∞) to R and solve the Loewner equation (4.2) for gt. Ideally, we would like
to solve (4.2) for gt, define simple curves γ(t), t ≥ 0, by setting γ(t) = g−1

t (Ut),
and have gt map H \ γ(0, t] conformally onto H. Although this is the correct
intuition, it is not quite precise because we see from the denominator on the
right-side of (4.2) that problems can occur if gt(z)− Ut = 0. Formally, if we let
Tz be the supremum of all t such that the solution to (4.2) is well-defined up to
time t with gt(z) ∈ H, and we define H t = {z : Tz > t}, then gt is the unique
conformal transformation of H t onto H with gt(z) − z → 0 as t → ∞ and has
expansion as in (4.1).

The novel idea of Schramm was to take the continuous function Ut to be a
one-dimensional Brownian motion starting at 0 with variance parameter κ ≥ 0.
This leads to the following definition. The chordal Schramm–Loewner evolution
with parameter κ ≥ 0 with the standard parametrization (or simply SLEκ) is the
random collection of conformal maps {gt, t ≥ 0} obtained by solving the initial
value problem

∂

∂t
gt(z) =

2

gt(z)−
√
κWt

, g0(z) = z,

where Wt is a standard one-dimensional Brownian motion.
The question is now whether or not there exists a curve associated with the

maps gt. The answer is yes, although describing this curve requires the following
deep theorem.
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• If 0 < κ ≤ 4, then there exists a random simple curve γ : [0,∞) → H with
γ(0) = 0 and γ(0,∞) ⊂ H. (That is, the curve never re-visits R.) Further-
more, the maps gt obtained by solving (4.2) are conformal transformations of
H \ γ(0, t] onto H. For this range of κ, our intuition matches the theory!

• For 4 < κ < 8, there exists a random curve γ : [0,∞) → H. These curves
have double points and they do hit R, but they never cross themselves! As
such, H \ γ(0, t] is not simply connected. However, H \ γ(0, t] does have a
unique connected component containing ∞. This is H t and the maps gt are
conformal transformations of H t onto H. We think of H t = H \Kt where Kt

is the hull of γ(0, t] visualized by taking γ(0, t] and filling in the holes. In the
case 0 < κ ≤ 4 where the curve is simple, we have Kt = γ(0, t].

• For κ ≥ 8, there exists a random curve γ : [0,∞) → H which is space-filling!
Furthermore, it has double points, but does not cross itself! As in the case
4 < κ < 8, the maps gt are conformal transformations of H t = H \Kt onto H

where Kt is the hull of γ(0, t].

The case κ 6= 8 was established by S. Rohde and O. Schramm [14] while the
case κ = 8 was proved by G. Lawler, O. Schramm, and W. Werner [11]. As a
result of this, we also refer to the curve γ as chordal SLEκ. It is worth mentioning
that SLE paths are extremely rough. It has been shown by V. Beffara [2] that the
Hausdorff dimension of a chordal SLEκ path is min{1+κ/8, 2}. The Java applet
simulation of SLE at http://stat.math.uregina.ca/∼kozdron/Simulations
works particularly well for 0 < κ < 4.

Since there exists a curve γ associated with the maps gt, it is possible to
reparametrize it. As such, it can be shown that if Wt is a standard one-
dimensional Brownian motion, then the solution to the initial value problem

(4.3)
∂

∂t
gt(z) =

2/κ

gt(z)−Wt

, g0(z) = z,

is chordal SLEκ parametrized so that hcap
(

γ(0, t]
)

= 2t/κ. For further details
on this point, see [10, Remark 6.7].

Finally, we would like to mention that chordal SLE as we have defined it can
also be thought of as a probability measure on paths in the upper half plane
H connecting the boundary points 0 and ∞. SLE is conformally invariant and
so we can define chordal SLEκ in any simply connected domain D connecting
distinct boundary points z and w to be the image of chordal SLEκ in H from
0 to ∞ under a conformal transformation from H onto D sending 0 7→ z and
∞ 7→ w.

As already noted, O. Schramm introduced SLE in 1999 while considering pos-
sible scaling limits of loop-erased random walk. Considerations from statistical
mechanics suggested that the limit should be a random simple curve satisfying
a type of conformal invariance property. Shortly thereafter, it was proved by
G. Lawler, O. Schramm, and W. Werner [11] that, in fact, the scaling limit of
loop-erased random walk can be given by SLE with parameter κ = 2. (To give
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the precise technical details of the proof, they actually considered a slightly differ-
ent version of SLE known as radial SLE which is a measure on paths connecting
an interior point to a boundary point. The extension of showing convergence
of loop-erased random walk to chordal SLE2 will appear as part of the Ph.D.
dissertation of F. Johansson of KTH Stockholm.)

5. Review of the excursion Poisson kernel. The excursion Poisson
kernel is formally defined as the normal derivative of the usual Poisson kernel.
However, it is also the mass of the Brownian excursion measure (which itself
is the scaling limit of simple random walk excursion measure), and the original
motivation for studying the excursion Poisson kernel was in this context. Further
details may be found in [6] and [7].

Suppose that D ⊂ C is a simply connected Jordan domain and that ∂D is
locally analytic at x and y. The excursion Poisson kernel is defined as

H∂D(x, y) := lim
ε→0

1

ε
HD(x+ εnx, y)

where HD(z, y) for z ∈ D is the usual Poisson kernel, and nx is the unit normal
at x pointing into D. The excursion Poisson kernel satisfies the following im-
portant conformal covariance property; see [7, Proposition 2.11]. If f : D → D′

is a conformal transformation where D′ ⊂ C is also a simply connected Jordan
domain, and ∂D′ is locally analytic at f(x), f(y), then

(5.1) H∂D(x, y) = |f ′(x)| |f ′(y)|H∂D′

(

f(x), f(y)
)

.

Explicit formulæ are known when D = D, the unit disk, or D = H, namely

H∂D(x, y) =
1

π|y − x|2 =
1

2π
(

1− cos(arg y − arg x)
)

and

(5.2) H∂H(x, y) =
1

π(y − x)2
.

Suppose now that x1, . . . , xn, y1, . . . , yn are distinct boundary points at which
∂D is locally analytic, let f : D → D′ be a conformal transformation, and assume
that ∂D′ is also locally analytic at f(x1), . . . , f(xn), f(y1), . . . , f(yn). It follows
[7, Proposition 2.16] that if H∂D(x,y) := [H∂D(xi, yℓ)]1≤i,ℓ≤n denotes the n×n
hitting matrix

H∂D(x,y) :=







H∂D(x1, y1) · · · H∂D(x1, yn)
...

. . .
...

H∂D(xn, y1) · · · H∂D(xn, yn)






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then

(5.3) detH∂D(x,y) =
(

n
∏

j=1

|f ′(xj)| |f ′(yj)|
)

det
[

H∂D′

(

f(xi), f(yℓ)
)]

1≤i,ℓ≤n
.

It now follows from (5.1) and (5.3) that

(5.4)
detH∂D(x,y)
n
∏

i=1

H∂D(xi, yi)

is a conformal invariant.
It is worth noting that H∂D(x, y) can be defined even if ∂D is not locally

analytic at x, y. Simply let f : D → D and take

H∂D(x, y) :=
∣

∣f ′
(

f−1(x)
)
∣

∣

−1 ∣
∣f ′

(

f−1(y)
)
∣

∣

−1
H∂D

(

f−1(x), f−1(y)
)

.

The reader will no doubt notice the similarities between the Brownian motion
functional (5.4) and the simple random walk functional (3.4). The first approach
to establishing a scaling limit of Fomin’s identity [7] involved showing that an
appropriate limit of (3.4) existed as the lattice spacing δ → 0. In fact, as an
extension of that work, it is shown in [6] that simple random walk excursion mea-
sure converges to Brownian excursion measure on any simply connected domain
with Jordan boundary.

6. The non-intersection probability of SLE2 and Brownian motion.

Since Fomin’s identity allows us to calculate the probability that loop-erased
random walk and simple random walk do not intersect, the natural continuous
analogue is the probability that SLE2 and Brownian motion do not intersect.

Suppose that γ : [0,∞) → H is a chordal SLE2 from 0 to ∞ in H. Suppose
further that 0 < x < y < ∞ are real numbers and let β : [0, tβ ] → H be a
Brownian excursion from x to y inH. Hence, our goal is to determineP{γ[0,∞)∩
β[0, tβ ] = ∅} and show that it can be expressed in terms of the determinant
of the Brownian excursion hitting matrix; see Figure 2. Notice the similarity
between the following theorem which may be called Fomin’s identity for SLE2

and Theorem 3.3. The proof we include is an expanded version (giving all the
details) of the one in [8].

Theorem 6.1 (Fomin’s Identity for SLE2). If x, y ∈ R with 0 < x < y <
∞ and that γ, β are as above, then

(6.1) P{γ[0,∞) ∩ β[0, tβ ] = ∅} =
detH∂D

(

f(x), f(y)
)

H∂D

(

f(0), f(∞)
)

H∂D

(

f(x), f(y)
)

where f : H → D is a conformal transformation.
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0 x y

∞

γ[0,∞), a chordal SLE2 β[0, tβ ], a Brownian excursion

Figure 2 : Schematic representation of P{γ[0,∞) ∩ β[0, tβ ] = ∅}.

Our strategy for establishing this result will be as follows. We will first deter-
mine an explicit expression for P{γ[0,∞)∩β[0, tβ ] = ∅}, and we will then show
that this explicit expression is the same as the right side of (6.1).

Proof. For every 0 < t <∞, let H t denote the slit-plane H t = H \ γ(0, t]
which implies that

P{γ[0, t] ∩ β[0, tβ ] = ∅} = E

[H∂H t
(x, y)

H∂H(x, y)

]

.

Therefore, letting t→ ∞ we conclude that

(6.2) P{γ[0,∞) ∩ β[0, tβ ] = ∅} = lim
t→∞

E

[H∂H t
(x, y)

H∂H(x, y)

]

= E

[

lim
t→∞

H∂H t
(x, y)

H∂H(x, y)

]

.

Let gt : H t → H be the unique conformal transformation satisfying the hydro-
dynamic normalization gt(z)− z = o(1) as z → ∞. As indicated in Section 4, it
is well-known that gt satisfies the chordal Loewner equation, namely

(6.3)
∂

∂t
gt(z) =

1

gt(z) +Wt

, g0(z) = z,

where Wt is a standard Brownian motion. (This follows from (4.3) by noting
that if Wt is a standard Brownian motion, then so too is −Wt.) We now map
H t to H by gt and use conformal covariance (5.1) to conclude that H∂H t

(x, y) =
g′t(x)g

′
t(y)H∂H

(

gt(x), gt(y)
)

and so

(6.4)
H∂H t

(x, y)

H∂H(x, y)
=
g′t(x)g

′
t(y)H∂H

(

gt(x), gt(y)
)

H∂H(x, y)
= (y − x)2 · g′t(x)g

′
t(y)

(

gt(y)− gt(x)
)2
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where the last equality follows from the explicit form of H∂H in (5.2). Let

Jt :=
g′t(x)g

′
t(y)

(

gt(y)− gt(x)
)2 and set J∞ := lim

t→∞
Jt.

To be consistent with notation in other papers (such as [8]), let H̃∗(x, y) :=
P{γ[0,∞) ∩ β[0, tβ ] = ∅} so that (6.2) and (6.4) give

H̃∗(x, y) = (y − x)2E
[

lim
t→∞

g′t(x)g
′
t(y)

(

gt(y)− gt(x)
)2

]

= (y − x)2E[ lim
t→∞

Jt]

= (y − x)2E[J∞].

(6.5)

Since our goal is to compute H̃∗(x, y) we will derive a differential equation for
H̃∗(x, y). Let Xt := gt(x) +Wt and Yt := gt(y) +Wt where gt and Wt are as
in (6.3) so that

dXt =
1

Xt

dt+ dWt and dYt =
1

Yt
dt+ dWt.

Some routine calculations give

∂

∂t
[log g′t(x)] = − 1

X2
t

,
∂

∂t
[log g′t(y)] = − 1

Y 2
t

,

∂

∂t

[

log
(

gt(y)− gt(x)
)]

= − 1

XtYt
,

and so we see that

Jt = exp{log Jt} = J0 exp

{
∫ t

0

∂

∂s
[log Js] ds

}

=
1

(y − x)2
exp

{

−
∫ t

0

( 1

Xs

− 1

Ys

)2

ds

}

since

J0 =
g′0(x)g

′
0(y)

(

g0(y)− g0(x)
)2 =

1

(y − x)2
.

Hence (6.5) implies that

H̃∗(x, y) = E

[

exp
{

−
∫ ∞

0

( 1

Xs

− 1

Ys

)2

ds
}]

.
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It now follows from the (usual) Markov property that JtH̃
∗(Xt, Yt) is a martin-

gale. That is, if Mt := E[J∞|Ft] so that Mt is a martingale, then

Mt = E

[ 1

(y − x)2
exp

{

−
∫ ∞

0

( 1

Xs

− 1

Ys

)2

ds
} ∣

∣

∣
Ft

]

=
1

(y − x)2
exp

{

−
∫ t

0

( 1

Xs

− 1

Ys

)2

ds
}

E

[

exp
{

−
∫ ∞

t

( 1

Xs

− 1

Ys

)2

ds
} ∣

∣

∣
Ft

]

= JtH̃
∗(Xt, Yt).

Itô’s formula at t = 0 now implies that

(6.6) −
( 1

x
− 1

y

)2

H̃∗ +
1

x

∂H̃∗

∂x
+

1

y

∂H̃∗

∂y
+

1

2

∂2H̃∗

∂x2
+

1

2

∂2H̃∗

∂y2
+
∂2H̃∗

∂x∂y
= 0

Since the probability in question only depends on the ratio x/y, we see that
H̃∗(x, y) = φ(x/y) for some function φ. Thus, we find

∂H̃∗

∂x
= y−1φ′(x/y),

∂H̃∗

∂y
= −xy−2φ′(x/y),

∂2H̃∗

∂x2
= y−2φ′′(x/y),

∂2H̃∗

∂y2
= 2xy−3φ′(x/y) + x2y−4φ′′(x/y),

∂2H̃∗

∂x∂y
= −y−2φ′(x/y)− xy−3φ′′(x/y),

so that after substituting into (6.6), multiplying by y2, letting u = x/y, and
combining terms, we have

(6.7) u2(1− u)2φ′′(u) + 2u(1− u)φ′(u)− 2(1− u)2φ(u) = 0.

Observe, however, that (6.7) is equivalent to

(6.8) u2(1− u)φ′′(u) + 2uφ′(u)− 2(1− u)φ(u) = 0

since 0 < u < 1. The second-order ordinary differential equation (6.8) has
regular singular points at 0, 1, and ∞, and so we know that it is possible to
transform it into a hypergeometric differential equation. By writing (6.8) as

(6.9) φ′′(u) +
[ 2

u
− 2

u− 1

]

φ′(u) +
[ 2

u2(u− 1)
− 2

u(u− 1)

]

φ(u) = 0

we see that we have a case of Riemann’s differential equation whose complete
set of solutions (see (15.6.1) and (15.6.3) of [1]) can be denoted by Riemann’s
P -function

φ(u) = P







0 ∞ 1
1 −2 3 u
−2 1 0







.
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By now considering (15.6.11) of [1], the transformation formula for Riemann’s
P -function for reduction to the hypergeometric function, we see that the appro-
priate change-of-variables to apply is ψ(u) := u−1(1− u)−3φ(u) noting that this
is permitted by the constraint 0 < u < 1. Thus, (6.8) implies

(6.10) u(1− u)ψ′′(u) + (4− 8u)ψ′(u)− 10ψ(u) = 0.

We see that (6.10) is now a well-known hypergeometric differential equation [1]
whose general solution is given by

ψ(u) = C1
2− u

(1− u)3
+ C2

1− 2u

u3(1− u)3
.

This implies that the general solution to (6.8) is φ(u) = C1u(2−u)+C2u
−2(1−

2u). However, physical considerations dictate that φ(u) → 0 as u → 0+ and
φ(u) → 1 as u→ 1−, and so C2 = 0 and C1 = 1. Thus, φ(u) = u(2− u) and so
we find

(6.11) P{γ[0,∞) ∩ β[0, tβ ] = ∅} = H̃∗(x, y) = φ(x/y) =
x

y

(

2− x

y

)

.

As already noted, the probability in question only depends on the ratio x/y, and
so it suffices without loss of generality to assume that 0 < x < 1 and y = 1.
Furthermore, we may assume that the conformal transformation f : H → D is
given by

(6.12) f(z) =
iz + 1

z + i
,

so that f(0) = −i, f(y) = f(1) = 1, f(∞) = i, and

f(x) =
( 2x

x2 + 1

)

+ i
(x2 − 1

x2 + 1

)

= exp
{

−i arctan
(1− x2

2x

)}

.

Writing f(x) = eiθ, we find that

detH∂D

(

f(x), f(y)
)

H∂D

(

f(0), f(∞)
)

H∂D

(

f(x), f(y)
)

=
H∂D(−i, i)H∂D(e

iθ, 1)−H∂D(−i, 1)H∂D(e
iθ, i)

H∂D(−i, i)H∂D(eiθ, 1)

=

1

2π(1− cosπ)

1

2π(1− cos θ)
− 1

2π(1− cos(π2 ))

1

2π(1− cos(π2 + θ))

1

2π(1− cosπ)

1

2π(1− cos θ)

=
2 cos θ + sin θ − 1

1 + sin θ
.
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Since θ = − arctan( 1−x2

2x ) we see that cos θ = 2x
x2+1 and sin θ = 1−x2

x2+1 which upon
substitution gives

2 cos θ + sin θ − 1

1 + sin θ
=

4x
x2+1 + 1−x2

x2+1 − 1

1 + 1−x2

x2+1

=
4x− 2x2

2
= x(2− x).

Comparison with (6.11) now yields the result, and the theorem is proved. �

Example 6.2. Suppose that γ is a chordal SLE2 from 0 to ∞ in H, and
let β be a Brownian excursion from x = 1/2 to y = 1 in H. Let f(z) be
as in (6.12) which is a conformal transformation of H onto D with f(0) = i,
f(1) = 1, f(∞) = −i. Also notice that f(1/2) = exp{−i arctan(3/4)}. A simple
calculation then shows that

P{γ[0,∞) ∩ β[0, tβ ] = ∅} =
2 · 4

5 + 3
5 − 1

1 + 3
5

=
1

2

(

2− 1

2

)

=
3

4
.

Remark 6.3. As the reader has no doubt discovered, by working in H and
D it is possible to perform explicit calculations. Since the quantity on the right
side of (6.1) is known to be a conformal invariant as in (5.4), we can show, with a
combination of conformal transformations, that the probability a chordal SLE2

avoids a Brownian excursion in any simply connected domain D is given by the
appropriate determinant of the matrix of excursion Poisson kernels.

Corollary 6.4. Suppose that D ⊂ C is a bounded, simply connected planar
domain, and that x1, x2, y2, y1 are four points ordered counterclockwise around
∂D. The probability a chordal SLE2 from x1 to y1 in D does not intersect a
Brownian excursion from x2 to y2 in D is Φ(x2)

(

2 − Φ(x2)
)

where Φ: D → H

is the conformal transformation with Φ(x1) = 0, Φ(y1) = ∞, Φ(y2) = 1.

This statement can be easily modified to cover the case when D is unbounded
and/or the case when ∞ is one of the boundary points.

Remark 6.5. In the case of n ≥ 2 paths, it is shown in [7] that the scal-
ing limit of the determinant of the simple random walk hitting matrix (3.4) is
the determinant of the Brownian excursion hitting matrix (5.4). The proof of
this result does not employ any SLE techniques. A formula analogous to Theo-
rem 6.1 relating the determinant of the Brownian excursion hitting matrix to a
probability involving n > 2 chordal SLE2 paths and Brownian excursions has not
yet appeared, although there has been work done constructing a finite measure
on n ≥ 2 mutually avoiding SLE2 paths (see [3] and [7]) in which the deter-
minant of the Brownian excursion hitting matrix is related to the mass of this
configurational measure.
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