HYPERCENTRAL UNIT GROUPS AND THE HYPERBOLICITY OF A MODULAR GROUP ALGEBRA

E. IWAKI AND S. O. JURIAANS

Presented by Edward Bierstone, FRSC

ABSTRACT. We classify groups G such that the unit group $\mathcal{U}_1(\mathbb{Z}G)$ is hypercentral. In the second part, we classify groups G whose modular group algebras KG have hyperbolic unit group $\mathcal{U}_1(KG)$.

RÉSUMÉ. Nous classifions les groupes G tels que le groupe unité $\mathcal{U}_1(\mathbb{Z}G)$ est hypercentral. Dans la deuxième partie, nous classifions les groupes G dont l'algèbre du groupe modulaire KG a un groupe unité $\mathcal{U}_1(KG)$ hyperbolique.

1. Introduction. We denote by $\Gamma = \mathcal{U}_1(\mathbb{Z}G)$ the group of units of augmentation one of the integral group ring $\mathbb{Z}G$ of G. Let

$$1 = \mathcal{Z}_0(\Gamma) \le \mathcal{Z}_1(\Gamma) \le \dots \le \mathcal{Z}_k(\Gamma) \le \dots$$

denote the upper central series of Γ . $\mathcal{Z}_n(\Gamma)$ will denote the *n*-th centre of Γ and we define $\mathcal{Z}_{\infty}(\Gamma) = \bigcup_{n \in \mathbb{N}} \mathcal{Z}_n(\Gamma)$. An element in $\mathcal{Z}_{\infty}(\Gamma)$ is called a hypercentral unit.

Hypercentral units has been an object of intensive study in recent years. See, for example, [1], [2], [6], [7], [8], [10], [11], [12], [13].

In [14], Polcino Milies classified finite groups such that the unit group of an integral group ring is nilpotent. The problem of classifying those G for which $\mathcal{U}_1(\mathbb{Z}G)$ is hypercentral was posed by several leading experts in the field. We completely solve this problem as a natural consequence of our research about the hypercentral units of an integral group ring done in [8]. Some of the results done in [8], including those needed for the result just mentioned, will appear in [7].

Hyperbolic groups have been a subject of intensive study in recent years. In Section 3, we deal with the topic of hyperbolic unit groups. In the context of hyperbolic unit groups, Juriaans, Passi and Prasad [9] studied the groups \mathcal{G} whose unit group $\mathcal{U}(\mathbb{Z}\mathcal{G})$ is hyperbolic and classified the polycyclic-by-finite subgroups of $\mathcal{U}(\mathbb{Z}\mathcal{G})$.

We classify the groups G for which the group of units with augmentation one of a modular group algebra, $\mathcal{U}_1(KG)$, is hyperbolic.

Received by the editors on November 6, 2006. AMS Subject Classification: 16S34, 16U60, 20C07. Keywords: hypercentre, normalizer, unit, hyperbolic.

© Royal Society of Canada 2007.

2. Groups with Hypercentral Unit Group. Unless otherwise stated explicitly, G will always denote an arbitrary group G.

Firstly we recall a result proved in [8] which we will need in our investigations. This result will also appear in [7].

LEMMA 2.1. Let $u \in \mathcal{Z}_n(\Gamma)$ and v an element of finite order in Γ . If $c = [u,v] \neq 1$ then $u^{-1}vu = v^{-1}$, $v^2 \in G \cap \mathcal{Z}_{n+1}(\Gamma) \subseteq \mathcal{Z}_{n+1}(G)$, $o(v) = 2^m$, $m \leq n$, $v^{2^{n-1}}$ is central, and if n = 2, then m = 2. In particular, elements of Γ that are of finite order and whose order is not a power of 2 commute with $\mathcal{Z}_{\infty}(\Gamma)$, and $\mathcal{Z}_{\infty}^2(\Gamma) \subseteq \mathcal{C}_{\Gamma}(T(G))$, where $\mathcal{C}_{\Gamma}(T(G))$ denotes the centralizer of T(G) in Γ . Here T(G) denotes the set of torsion elements of G.

We need the following result proved in the context of nilpotent unit groups by Sehgal–Zassenhaus [19].

LEMMA 2.2. Suppose that Γ is hypercentral and let $t, t_1, t_2 \in T = T(G)$, $g \in G$.

- (a) Every finite subgroup of G is normal in G.
- (b) If $g^{-1}tg \neq t$ then $g^{-1}tg = t^{-1}$.
- (c) If t has odd order then gt = tg.
- (d) If $1 \neq t_1$ has odd order, t_2 has even order then T is a central subgroup of G.

As a consequence of the previous results, we now state the main result in this section.

THEOREM 2.3. $\Gamma = \mathcal{U}_1(\mathbb{Z}G)$ is hypercentral if and only if G is hypercentral and the torsion subgroup T of G satisfies one of the following conditions:

- (a) T is central in G;
- (b) T is an abelian 2-group and for $g \in G$, $t \in T$

$$q^{-1}tq = t^{\delta(g)}, \quad \delta(q) = \pm 1;$$

- (c) $T = K_8 \times E_2$, where K_8 denotes the quaternion group of order 8 and E_2 is an elementary abelian 2-group. Moreover, E_2 is central, and conjugation by $g \in G$ induces one of the four inner automorphisms on K_8 .
- 3. Modular group algebras with hyperbolic group ring units. Let \mathbb{Z}^2 denote the free abelian group of rank two. Let p be a rational prime, and let $GF(p^n)$ denote the Galois field with p^n elements. Let $\operatorname{tr.deg}(K)$ denote the transcendence degree of the field K over GF(p), and $\mathcal{U}_1(KG)$ the group of units of KG with augmentation one.
- LEMMA 3.1. Let G be an arbitrary group, K a field with $\operatorname{char}(K) = p > 0$ and $\operatorname{tr.deg}(K) \geq 1$. Suppose that g_0 is a torsion element of G and $p \nmid o(g)$. Then \mathbb{Z}^2 embeds in $\mathcal{U}_1(KG)$, and consequently, $\mathcal{U}_1(KG)$ is not hyperbolic.

In what follows we investigate under what conditions the group of units of a modular group algebra of a finite (non-trivial) group G is hyperbolic.

We denote by $\mathcal{J}(KG)$ the Jacobson Radical of KG. Let $\omega(G)$ represent the augmentation ideal of KG.

LEMMA 3.2. Suppose that G is a finite (non-trivial) group and K is a field with char(K) = p > 0 and $tr.deg(K) \ge 1$. Then $U_1(KG)$ is not hyperbolic.

THEOREM 3.3. Let G be a finite (non-trivial) group and K a field with char(K) = p > 0. Under these conditions, $U_1(KG)$ is hyperbolic if and only if K is finite.

We state the main result of this section.

THEOREM 3.4. Let G be an arbitrary group with torsion and K a field with char(K) = p > 0. If $U_1(KG)$ is hyperbolic then K is algebraic over GF(p).

Our next theorem considers the case in which G is an arbitrary (non-trivial) group and K a field of $\operatorname{char}(K) = p > 0$, under the hypothesis that $\mathcal{U}(KG)$ is hyperbolic.

THEOREM 3.5. Let G be an arbitrary (non-trivial) group and K a field of char(K) = p > 0. If $\mathcal{U}(KG)$ is hyperbolic then K is finite.

ACKNOWLEDGEMENTS. This work is part of the first author's Ph.D. thesis. He would like to thank his thesis supervisor, Dr. Stanley Orlando Juriaans, for his guidance during this work.

References

- S. R. Arora, A. W. Hales and I. B. S. Passi, Jordan decomposition and hypercentral units in integral group rings. Comm. Algebra 21 (1993), 25–35.
- S. R. Arora and I. B. S. Passi, Central height of the unit group of an integral group ring. Comm. Algebra 21 (1993), 3673–3683.
- A. A. Bovdi, The periodic normal divisors of the multiplicative group of a group ring I. Sibirsk Mat. Z. 9 (1968), 495–498.
- The periodic normal divisors of the multiplicative group of a group ring II. Sibirsk Mat. Z. 11 (1970), 492–511.
- M. Gromov, Hyperbolic groups. In: Essays in group theory, Math. Sci. Res. Inst. Publ. 8 (1987), 75–263.
- **6.** M. Hertweck, Contributions to the integral representation theory of groups. Habilitationsschrift, Stuttgart, 2003.
- M. Hertweck, E. Iwaki, E. Jespers and S. O. Juriaans, On hypercentral units of integral group rings. J. Group Theory 10 (2007), 477–504.
- 8. E. Iwaki, Unidades hipercentrais em aniis de grupo inteiro e a hiperbolicidade do grupo de unidades de uma algebra de grupo modular. Ph.D. thesis, IME-USP, 2006.
- S. O. Juriaans, I. B. S. Passi and D. Prasad, Hyperbolic unit groups. Proc. Amer. Math. Soc. 133 (2005), 415–423.
- Y. Li, The hypercentre and the n-centre of the unit group of an integral group ring. Canad. J. Math. 50 (1998), 401–411.
- Y. Li and M. M. Parmenter, Hypercentral units in integral group rings. Proc. Amer. Math. Soc. 129 (2001), 2235–2238.

- 12. _____, Some results on hypercentral units in integral group rings. Comm. Algebra 31 (2003), 3207–3217.
- 13. _____, The upper central series of the unit group of an integral group ring. Comm. Algebra 33 (2005), 1409–1415.
- C. P. Milies, Integral group rings with nilpotent unit groups. Canad. J. Math. 28 (1976), 954–960.
- D. S. Passman, The algebraic structure of group rings. John Wiley & Sons, New York, 1977.
- D. J. S. Robinson, A course in the theory of groups. 2nd edition, Springer-Verlag, New York, 1996.
- 17. Sudarshan K. Sehgal, Topics in group rings. Marcel Dekker Inc., New York, 1978.
- S. K. Sehgal, Units in integral group rings. Pitman Monogr. Surveys Pure Appl. Math. 69, Longman Scientific & Technical, Harlow, 1993.
- S. K. Sehgal and H. Zassenhaus, Integral group rings with nilpotent unit groups. Comm. Algebra 5 (1977), 101–111.

Centro de Matemática, Computação e Cognição Universidade Federal do ABC Rua Catequese 242-3 andar Santo André, CEP 09090-400 Brazil email: edson.iwaki@ufabc.edu.br Instituto de Matemática e Estatística Universidade de São Paulo Caixa Postal 66281 São Paulo, CEP 05315-970 Brazil

 $email:\ ostanley@ime.usp.br$