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Abstract. An open inverse problem that generalizes the classical
moment problem is to construct all probability distributions on the real
line whose sequence of orthogonal polynomials includes a prescribed sub-

sequence. We have recently solved this problem for a class of subsequences

that arise naturally in the context of iterative quadrature schemes, thereby
making it possible to construct previously unknown distributions whose
orthogonal polynomials have exotic properties. The results are illustrated

here by an example: we explicitly construct a distribution on the interval
[−1, 1], such that for every k ≥ 1, its degree 2k − 1 orthogonal polynomial
divides that of degree 2k+1 − 1, and the zeros of these are equally spaced.

Equal spacing of the zeros contrasts starkly with the generic asymptotic
behaviour predicted by Szegö’s classical theorem.

Résumé. Un problème inverse qui reste ouvert et qui généralise le

problème classique des moments est de construire toutes les lois de proba-
bilité sur la droite réelle dont la suite des polynômes orthogonaux associée
comprend une sous-suite prescrite. On a récemment résolu le problème pour

une classe de sous-suites qui provient naturellement des schémas de quad-

rature iteratifs, ce qui rend possible la construction de lois de probabilités
nouvelles dont les polynômes orthogonaux ont des propriétes exotiques. Les
résultats sont illustrés ici par un exemple: on construit explicitement une
loi sur l’intervalle [−1, 1], tel que pour tout k ≥ 1, son polynôme orthogonal

de degré 2k − 1 divise celui de degré 2k+1 − 1, et les zéros de ceux-ci sont
également distribués. La distribution égale des zéros se differencie de la
distribution asymptotique générique prédite par le théorème classique de

Szegö.

1. Introduction. We present a new example of a probability distribution
on the line, which we call the dyadic distribution, that serves to illustrate the
exotic structure possible for a sequence of orthogonal polynomials when no re-
strictions are placed on its generating distribution. This fits into the framework
of, and complements, ongoing research into the asymptotic distribution of zeros
of orthogonal polynomials, such as that of Denisov and Simon [3] and Peherstor-
fer [6], among others.

The theoretical existence of the dyadic distribution, without explicit formulas,
was recently established in [5], which we now discuss briefly, fixing notation as
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follows. Given a probability distribution dσ on the real line with respect to which
polynomials are integrable, let pσ0 , p

σ
1 , p

σ
2 , . . . denote its associated sequence of

monic, orthogonal polynomials. The question of whether one can construct a
distribution to realize a prescribed sequence as its orthogonal polynomials is in
fact a re-casting of the classical moment problem [1], since the sequence {pσn}
carries precisely the same information about dσ as does the moment sequence
{µσ

n}, defined by µσ
n =

∫

xn dσ(x). One of two main results in [5] can be viewed
as solving a variant of the classical moment problem, in which, rather than
prescribing the full sequence of orthogonal polynomials, only a thin subsequence
is prescribed, with the additional restriction that earlier terms in the subsequence
divide all later terms, or, in other words, have all their zeros in common with
later terms. A basic constraint imposed by standard interlacing results is that
if m < n, then pσm and pσn share at most n−m− 1 zeros. Thus, for example, if
pσm divides pσn then n ≥ 2m + 1. The “fast iterative” distributions constructed
in [5] have the property that they contain a subsequence {pσνk

}∞k=1 such that pσνk

divides pσνk+1
for every k ≥ 1, and where the indices νk grow as slowly as possible

in the sense that νk+1 = 2νk+1. (For a generic distribution dσ, two polynomials
pσm and pσn can be expected to have no common zeros at all, except possibly 0 in
the case of symmetric distributions. See [4].)

Beyond interlacing, there also exist metric constraints governing the zeros
of orthogonal polynomials. For example, consider the sequence of polynomials
whose zeros are evenly spaced in the open interval (−1, 1):

(1) pn(x) =
n
∏

k=1

(

x−
2k − n− 1

n+ 1

)

.

The zeros of these polynomials interlace, but they are not the orthogonal polyno-
mials of any distribution. (In fact, there are distributions dσ such that pσn = pn
for n = 1, 2, 3, but the equality inevitably breaks down at n = 4.) The well-
known asymptotic result of Szegö [7, Chapter 12.7] asserts that the orthogonal
polynomials of a wide class of distributions on [−1, 1] have zeros that tend to be
distributed like the those of the Chebyshev polynomials, eventually clustering at
the endpoints.

It is with reference to the above discussion that the dyadic distribution is an
extreme contrast to the generic situation: an infinite subsequence of its orthogo-
nal polynomials is such that the earlier terms in the subsequence divide all later
terms, and each term in the subsequence has equally spaced zeros.

We cite [7] and [2] for the basic theory of orthogonal polynomials, and in
particular their relations to discrete distributions and Jacobi matrices. Before
describing the dyadic distribution, we recall some particular facts from the stan-
dard theory that will be needed in later arguments.

1.1. Preliminary facts. One basic technical fact that we need is the following.
Given a distribution dσ on R with respect to which polynomials are integrable
and whose support contains at least m+1 points, there is a unique distribution
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of the form

(2) dσm(x) =
m
∑

i=1

ciδ(x− ξi)

that has the property that for every polynomial p of degree at most 2m− 1,

(3)

∫

∞

−∞

p dσm =

∫

∞

−∞

p dσ.

This is of course the m-point Gauss rule for dσ. We reserve the notation dσm
for this particular distribution determined by dσ. dσm is supported precisely
at the zeros of pσm, the degree m orthogonal polynomial generated by dσ, and
is uniquely determined by the pair of polynomials pσm−1, p

σ
m. The Christoffel

numbers ci in (2) are given in terms of pσm−1, p
σ
m by the formula

(4) ci =
C1

pσm−1(ξi)(p
σ
m)′(ξi)

,

where C1 > 0 is the appropriate normalizing constant. dσm is also uniquely
determined by the pair of polynomials pσm, p

σ
m+1. In terms of these the Christoffel

numbers ci in (2) are given by the formula

(5) ci =
C2

(pσm)′(ξi)pσm+1(ξi)
,

where C2 < 0 is again the appropriate normalization constant. (See [7, p. 48].)
These facts can be turned around as follows. Let S = {s1, . . . , sm} and

T = {t1, . . . , tm+1} be any two sets of numbers that satisfy

t1 < s1 < t2 < s2 < · · · < tm < sm < tm+1,

and let p and q be the monic polynomials having (simple) zeros S and T re-
spectively. Then there exists a unique distribution dγ supported on T with the
property that supp dγm = S. The uniquely determined distribution dγ and its
m-point Gauss rule dγm are given by the respective formulas

dγ(x) = C

m+1
∑

i=1

δ(x− ti)

p(ti)q′(ti)
, where C =

(

m+1
∑

i=1

1

p(ti)q′(ti)

)−1

,(6)

dγm(x) = C ′

m
∑

i=1

δ(x− si)

p′(si)q(si)
, where C ′ =

(

m
∑

i=1

1

p′(si)q(si)

)−1

.(7)

These formulas will be used in the proof of our main theorem.
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2. The dyadic distribution.

2.1. Construction. Let D denote the set of dyadic rational numbers in the open
interval (−1, 1). A dyadic rational of the form λ = r/2j , where r is odd and
j ≥ 1, is said to have order j; the number 0 is deemed to be the unique dyadic
rational of order 0. Dj denotes the set of dyadic rationals in (−1, 1) of order at
most j. The numbers

(8) ψ(λ, n) =

(

2n+1
−2

2n(1+λ)−1

)

(

2n+1−2
2n−1

)
, where n ≥ 1 and λ ∈ Dn,

play a central role in our considerations. Note that ψ(−λ, n) = ψ(λ, n), that
ψ(λ, n) can be expressed as a ratio of rising factorials,

(9) ψ(λ, n) =

(

2n(1− |λ|)
)(

2n(1− |λ|) + 1
)

· · · (2n − 1)

(2n)(2n + 1) · · ·
(

2n(1 + |λ|)− 1
) ,

and that for fixed λ of order j ≥ 1 the sequence {ψ(λ, n)}∞n=j is strictly decreas-
ing.

We define a non-negative function w on R in terms of the ψ(λ, n) as follows.
If λ ∈ D has order j, where j ≥ 1, then set

(10) w(λ) = 2−jψ(λ, j)−

∞
∑

n=j+1

2−nψ(λ, n),

and otherwise set w(λ) = 0. If λ ∈ D has positive order then the expression (10)
defining w(λ) is strictly positive. Furthermore, we show in Section 2.2 (Corol-
lary 3) that

∑

λ∈D

w(λ) = 1.

This paves the way for our main definition.

Definition 1. Let dα denote the probability distribution defined by

dα(x) =
∑

λ∈D

w(λ)δ(x− λ),

where δ denotes the Dirac delta function. We shall refer to dα as the dyadic

distribution on [−1, 1].

The accumulation function of dα is

(11) α(x) =
∑

λ∈D

w(λ)H(x− λ),
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where H denotes the Heaviside function:

H(x) =

{

0 if x < 0

1 if x ≥ 0.

Our main result is the proof in Section 2.4 that an infinite subsequence of the
orthogonal polynomials generated by dα have zeros that are equally spaced in
(−1, 1). As a first step we establish some basic properties of dα.

2.2. Basic properties. It will be useful to work with the following approxima-
tions to the function w. For each k ≥ 0, set wk(λ) = 0 if λ /∈ Dk, and for λ ∈ Dk

set
(12)

wk(λ) =























2−kψ(λ, k) if λ has order k,

2−jψ(λ, j)−
k

∑

n=j+1

2−nψ(λ, n) if λ has order j and 1 ≤ j < k,

2−k if λ = 0.

Note that wk is strictly positive on Dk. Moreover, with some careful bookkeeping
one can check that

∑

λ∈Dk

wk(λ) = 1.

Let dαk denote the associated distribution supported on Dk, defined as

(13) dαk(x) =
∑

λ∈Dk

wk(λ)δ(x− λ),

and let αk be the accumulation function

(14) αk(x) =
∑

λ∈Dk

wk(λ)H(x− λ).

We omit the proof of the following estimate.

Lemma 2.
∑

λ∈D
|w(λ)− wk(λ)| = O(2−k/2).

The lemma leads immediately to two useful facts.

Corollary 3.
∑

λ∈D
w(λ) = limk→∞

∑

λ∈D
wk(λ) = 1.

Corollary 4. αk → α uniformly.

We are now in a position to move on to the structure of the orthogonal poly-
nomials generated by dα.
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2.3. The orthogonal polynomials.

Theorem 1. For each k ≥ 1, the degree 2k−1 monic, orthogonal polynomial

of the dyadic distribution is

pα2k−1(x) =
∏

λ∈Dk−1

(x− λ).

Proof. For each k ≥ 1, set

sk =
22

k+1
−k−3

(

2k+1−2
2k−1

)
,(15)

uk(λ) =

{

2−2k+1+3
(

2k+1
−2

2k(1+λ)−1

)

λ ∈ Dk−1,

0 otherwise,
(16)

vk(λ) =

{

2−2k+1+3
(

2k+1
−2

2k(1+λ)−1

)

λ ∈ Dk \ Dk−1,

0 otherwise.
(17)

It follows directly from these definitions that each of uk and vk is non-negative,
∑

λ u
k(λ) =

∑

λ v
k(λ) = 1, and

(18) wk(λ) = wk−1(λ)− sku
k(λ) + skv

k(λ).

Setting

(19) dϕk(x) =
∑

λ

uk(λ)δ(x− λ) and dθk(x) =
∑

λ

vk(λ)δ(x− λ),

the equation (18) is equivalent to

dαk = dαk−1 − skdϕ
k + skdθ

k

= dαk−1 + sk(dθ
k − dϕk).

(20)

The key observation is that, setting S = Dk−1 and T = Dk \ Dk−1, the
distributions dγ and dγm defined according to the formulas (6) and (7) are equal
to dθ and dϕ respectively. (The fact that points in S and T are equally spaced
makes this a straightforward calculation.) Thus dϕ = dθm, where m = 2k − 1
is the size of Dk−1. This means that for every polynomial p of degree at most
2m− 1,

∫

∞

−∞

p dθ −

∫

∞

−∞

p dϕ = 0,

which implies in turn by equation (20) that

∫

∞

−∞

p dαk =

∫

∞

−∞

p dαk−1.
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Iterating the above reasoning yields more generally that for every n ≥ 0 and
every polynomial p of degree at most 2m− 1 (= 2k+1 − 3),

(21)

∫

∞

−∞

p dαk+n =

∫

∞

−∞

p dαk−1.

By Corollary 4, letting n→ ∞ in (21) yields that

∫

∞

−∞

p dα =

∫

∞

−∞

p dαk−1,

from which it follows that

(22) dα2k−1 = dαk−1.

Therefore the zeros of pα2k−1 coincide with the support of dαk−1, which is Dk−1

by construction.

Of course the points of Dk−1 are equally spaced:

Dk−1 =
{n− 2k−1

2k−1

∣

∣

∣ 1 ≤ n ≤ 2k − 1
}

.

And, since Dk ⊂ Dk+n for any n, it follows immediately from the theorem that
pα2k−1 divides pα2k+n−1.

2.4. Structure of the Jacobi matrix. We recall that any sequence of orthogonal
polynomials on R obeys a 3-term recurrence of the form

(23) pσn+1(x) = (x− an+1)p
σ
n(x)− b2np

σ
n−1(x) n ≥ 1,

with starting values pσ0 = 1, a1 = µσ
1 (the first moment of dσ) and pσ1 (x) = x−a1.

The values an and bn are the diagonal and next-to-diagonal entries of the Jacobi
matrix of dσ, defined as

(24) Jσ =















a1 b1 0 0 · · ·
b1 a2 b2 0 · · ·
0 b2 a3 b3 · · ·
0 0 b3 a4 · · ·
...

...
...

...
. . .















,

where, according to the standard theory, an ∈ R and bn > 0, for each n ≥ 1.
Since the dyadic distribution is symmetric about 0, its Jacobi matrix Jα has

zero diagonal. Thus the dyadic Jacobi matrix is represented by the sequence of
positive terms b1, b2, . . . . A plot of several hundred terms of the sequence reveals
some intriguing structure. This is most clearly brought out if, instead of bn, one
plots 4(bn)

2 − 1 against log2 n, as in Figure 1.
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Figure 1 : A plot of 4(bn)
2 − 1 versus log2 n (1 ≤ n ≤ 1022).
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Figure 2 : A closer view.

It looks like an electrocardiogram! More precisely, it seems clear that the
sequence {bn} is asymptotically log2 periodic. The zoomed image in Figure 2 of
the latter 5 cycles shows more clearly the progressive stabilization of the picture.

Away from the positive peaks at powers of 2 (which in Figures 1 and 2 occur
at integer values of log2 n), it seems reasonable to conjecture that bn has the
asymptotic structure

(25) bn ∼
1

2

√

1− (log2 n− [log2 n])
β ,

where [log2 n] denotes the integer part of log2 n, and where the constant β lies
between 2 and 3.

3. Conclusion. In summary, the dyadic distribution we have presented
captures in concrete form some of the strange possibilities realizable within the
context of orthogonal polynomials generated by completely general probability
distributions on R. The apparent asymptotic log2 periodicity of the dyadic
distribution’s Jacobi matrix constitutes an intriguing fact that calls for deeper
explanation.
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