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ABSTRACT.  An open inverse problem that generalizes the classical
moment problem is to construct all probability distributions on the real
line whose sequence of orthogonal polynomials includes a prescribed sub-
sequence. We have recently solved this problem for a class of subsequences
that arise naturally in the context of iterative quadrature schemes, thereby
making it possible to construct previously unknown distributions whose
orthogonal polynomials have exotic properties. The results are illustrated
here by an example: we explicitly construct a distribution on the interval
[=1,1], such that for every k > 1, its degree 2% — 1 orthogonal polynomial
divides that of degree 2¥*1 — 1, and the zeros of these are equally spaced.
Equal spacing of the zeros contrasts starkly with the generic asymptotic
behaviour predicted by Szegd’s classical theorem.

RESUME. Un probleme inverse qui reste ouvert et qui généralise le
probléme classique des moments est de construire toutes les lois de proba-
bilité sur la droite réelle dont la suite des polynémes orthogonaux associée
comprend une sous-suite prescrite. On a récemment résolu le probléme pour
une classe de sous-suites qui provient naturellement des schémas de quad-
rature iteratifs, ce qui rend possible la construction de lois de probabilités
nouvelles dont les polynémes orthogonaux ont des propriétes exotiques. Les
résultats sont illustrés ici par un exemple: on construit explicitement une
loi sur U'intervalle [—1, 1], tel que pour tout & > 1, son polynoéme orthogonal
de degré 28 — 1 divise celui de degré 251 — 1, et les zéros de ceux-ci sont
également distribués. La distribution égale des zéros se differencie de la
distribution asymptotique générique prédite par le théoréeme classique de
Szego.

Introduction. We present a new example of a probability distribution

on the line, which we call the dyadic distribution, that serves to illustrate the
exotic structure possible for a sequence of orthogonal polynomials when no re-
strictions are placed on its generating distribution. This fits into the framework
of, and complements, ongoing research into the asymptotic distribution of zeros
of orthogonal polynomials, such as that of Denisov and Simon [3] and Peherstor-

fer [6], among others.

The theoretical existence of the dyadic distribution, without explicit formulas,
was recently established in [5], which we now discuss briefly, fixing notation as
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follows. Given a probability distribution do on the real line with respect to which
polynomials are integrable, let p§,py,p9,... denote its associated sequence of
monic, orthogonal polynomials. The question of whether one can construct a
distribution to realize a prescribed sequence as its orthogonal polynomials is in
fact a re-casting of the classical moment problem [1], since the sequence {pZ}
carries precisely the same information about do as does the moment sequence
{ug}, defined by pug = [ 2™ do(z). One of two main results in [5] can be viewed
as solving a variant of the classical moment problem, in which, rather than
prescribing the full sequence of orthogonal polynomials, only a thin subsequence
is prescribed, with the additional restriction that earlier terms in the subsequence
divide all later terms, or, in other words, have all their zeros in common with
later terms. A basic constraint imposed by standard interlacing results is that
if m < n, then pg, and pg share at most n —m — 1 zeros. Thus, for example, if
po. divides p? then n > 2m + 1. The “fast iterative” distributions constructed
in [5] have the property that they contain a subsequence {p¢, }32, such that pg
divides py, for every k > 1, and where the indices vy grow as slowly as possible
in the sense that vi41 = 2y, + 1. (For a generic distribution do, two polynomials
pg. and p? can be expected to have no common zeros at all, except possibly 0 in
the case of symmetric distributions. See [4].)

Beyond interlacing, there also exist metric constraints governing the zeros
of orthogonal polynomials. For example, consider the sequence of polynomials
whose zeros are evenly spaced in the open interval (—1,1):

1) polo) = 11 (s Honsd),

The zeros of these polynomials interlace, but they are not the orthogonal polyno-
mials of any distribution. (In fact, there are distributions do such that p? = p,
for n = 1,2,3, but the equality inevitably breaks down at n = 4.) The well-
known asymptotic result of Szego [7, Chapter 12.7] asserts that the orthogonal
polynomials of a wide class of distributions on [—1, 1] have zeros that tend to be
distributed like the those of the Chebyshev polynomials, eventually clustering at
the endpoints.

It is with reference to the above discussion that the dyadic distribution is an
extreme contrast to the generic situation: an infinite subsequence of its orthogo-
nal polynomials is such that the earlier terms in the subsequence divide all later
terms, and each term in the subsequence has equally spaced zeros.

We cite [7] and [2] for the basic theory of orthogonal polynomials, and in
particular their relations to discrete distributions and Jacobi matrices. Before
describing the dyadic distribution, we recall some particular facts from the stan-
dard theory that will be needed in later arguments.

1.1.  Preliminary facts. One basic technical fact that we need is the following.
Given a distribution do on R with respect to which polynomials are integrable
and whose support contains at least m 4+ 1 points, there is a unique distribution
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of the form
(2) dom () =Y cib(z — &)
=1

that has the property that for every polynomial p of degree at most 2m — 1,

(3) /pdam:/ pdo.

This is of course the m-point Gauss rule for do. We reserve the notation do,,
for this particular distribution determined by do. do,, is supported precisely
at the zeros of p?,, the degree m orthogonal polynomial generated by do, and
is uniquely determined by the pair of polynomials pg _,,po . The Christoffel
numbers ¢; in (2) are given in terms of pg, ;,p2, by the formula

— Cl
P () (p5) (&)

(4) ci

where C7 > 0 is the appropriate normalizing constant. do,, is also uniquely
determined by the pair of polynomials pg,, p5, ;1. In terms of these the Christoffel
numbers ¢; in (2) are given by the formula

Cs
(05, (€)pG, 41 (&)

(5) ¢ =

where Cy < 0 is again the appropriate normalization constant. (See [7, p. 48].)
These facts can be turned around as follows. Let S = {s1,...,s,} and
T ={t1,...,tm+1} be any two sets of numbers that satisfy

tl<81<t2<82<"'<tm<8m<tm+1,
and let p and ¢ be the monic polynomials having (simple) zeros S and T re-
spectively. Then there exists a unique distribution dvy supported on 7" with the

property that supp dv,, = S. The uniquely determined distribution dy and its
m-point Gauss rule d-,, are given by the respective formulas

m+1 s m+1 -1
(6) dy(z) =C Z M where C = (Z ﬁ) )

= p(ti)q (t:)’ — p(ti)q
=’ 3 OMe —s) where C’ = - S
(1) dyml(x)=C ;p/(si)q(si), here C (; p,(si)q(si)) .

These formulas will be used in the proof of our main theorem.
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2. The dyadic distribution.

2.1.  Construction. Let D denote the set of dyadic rational numbers in the open
interval (—1,1). A dyadic rational of the form A = r/27, where r is odd and
j > 1, is said to have order j; the number 0 is deemed to be the unique dyadic
rational of order 0. ID; denotes the set of dyadic rationals in (—1,1) of order at
most j. The numbers

2ne)
1__
(o7’

play a central role in our considerations. Note that ¢¥(—\,n) = ¥ (A, n), that
Y(A, n) can be expressed as a ratio of rising factorials,

(8) (A n) = , where n > 1 and A\ € D,,,

21— D)@ A - [A)+1)--- (2" — 1)
@) +1)---(2ra+ ) -1)

(9) (A, n) =

and that for fixed A of order j > 1 the sequence {1)(\,n)}72; is strictly decreas-
ing.

We define a non-negative function w on R in terms of the (A, n) as follows.
If A € D has order j, where j > 1, then set

(10) wd) =279\ ) = Y 27"\ n),
n=j+1

and otherwise set w(A) = 0. If A € D has positive order then the expression (10)
defining w(\) is strictly positive. Furthermore, we show in Section 2.2 (Corol-

lary 3) that
Z w(A) = 1.
reD

This paves the way for our main definition.

DEFINITION 1. Let da denote the probability distribution defined by

doa(z) = Z w(N)o(z — N),

AeD

where § denotes the Dirac delta function. We shall refer to da as the dyadic
distribution on [—1,1].

The accumulation function of do is

(11) a(z) =Y wNH(x - N),

Aeb
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where H denotes the Heaviside function:

H(z) = 0 ifz<O
)1 ifx>o0.

Our main result is the proof in Section 2.4 that an infinite subsequence of the
orthogonal polynomials generated by da have zeros that are equally spaced in
(—=1,1). As a first step we establish some basic properties of da.

2.2.  Basic properties. It will be useful to work with the following approxima-
tions to the function w. For each k > 0, set w¥()\) = 0 if A ¢ Dy, and for A € Dy,
set

(12)
2 k(N k) if A has order k,
k
wr(\) = { 2799(N, ) — Z 27™p(A,n) if XA has order j and 1 < j <k,
n=j+1
27k if A =0.

Note that w” is strictly positive on Dj. Moreover, with some careful bookkeeping
one can check that
Z wh(\) = 1.

AEDy

Let da® denote the associated distribution supported on Dy, defined as

(13) dof(z) = Y wF(N)é(z - N),

AeDy

and let o be the accumulation function

(14) o (x) = Z wr (N H (z — ).

AeDy,
We omit the proof of the following estimate.

LEMMA 2. Y, cplw(A) —wF(N)] = 0(27%/2).

The lemma leads immediately to two useful facts.
COROLLARY 3. >\ pw(N) =limpee Yoy cpw®(A) = 1.

COROLLARY 4. of — a uniformly.

We are now in a position to move on to the structure of the orthogonal poly-
nomials generated by da.
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2.8.  The orthogonal polynomials.

THEOREM 1.  For each k > 1, the degree 2 —1 monic, orthogonal polynomial
of the dyadic distribution is

Por_q (@) = H (= A).

AEDR 1
Proor. For each k > 1, set

22"’+1—k—3
(15) Sk = 3t gy
Coe 1)

2k (142)—1

okl ok+1_o
(16) oy =12 ) AEDi,
0 otherwise,

(17)

_oktl, g, oktl_g
() = 27 oktaa 1) A €D\ Do,
0 otherwise.

It follows directly from these definitions that each of u* and v* is non-negative,

Yaut(N) =3, 0F(\) =1, and

(18) wh(\) = wP () = spuf (V) + sp0F ().

Setting

(19) dpb(z) =Y uF(N)o(z —A) and df*(z) = o (N)d(z - N),
A A

the equation (18) is equivalent to
(20) do* = da*=1 — spdp" + s1,.d6"
= da" ! 4 s (dO* — do").

The key observation is that, setting S = Di_; and T = Dy \ Dg_1, the
distributions d~y and dr,, defined according to the formulas (6) and (7) are equal
to df and dy respectively. (The fact that points in S and T are equally spaced
makes this a straightforward calculation.) Thus dy = df,,, where m = 2F — 1
is the size of Dy_;. This means that for every polynomial p of degree at most

2m — 1,
/ pd@*/ pdp =0,

which implies in turn by equation (20) that

/ pda® :/ pda1.
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Iterating the above reasoning yields more generally that for every n > 0 and
every polynomial p of degree at most 2m — 1 (= 2F+1 — 3),

o [ v = [ ot

— 00 — 00

By Corollary 4, letting n — oo in (21) yields that

/ pda = / pdaF1,

(22) dagk_l = dakil.

from which it follows that

Therefore the zeros of p3;,_,; coincide with the support of da®#=1, which is Dj_q
by construction. [

Of course the points of Dy_; are equally spaced:

_2k—1
Dkflz{nQTllgTLSQk—l}

And, since Dy, C Dy, for any n, it follows immediately from the theorem that
PS5y divides piin ;-

2.4. Structure of the Jacobi matriz. We recall that any sequence of orthogonal
polynomials on R obeys a 3-term recurrence of the form

(23) Pra(@) = (@ = anpn)pi(2) — bop7 4 (x) n =1,

with starting values p§ = 1, a; = p§ (the first moment of do) and p{(z) = z—ajy.
The values a,, and b,, are the diagonal and next-to-diagonal entries of the Jacobi
matrix of do, defined as

ap b1 0 0
b1 a9 b2 0
(24) J,=|0 b2 a3 bs

0 0 bg Qy

where, according to the standard theory, a,, € R and b, > 0, for each n > 1.

Since the dyadic distribution is symmetric about 0, its Jacobi matrix J, has
zero diagonal. Thus the dyadic Jacobi matrix is represented by the sequence of
positive terms by, bo, . ... A plot of several hundred terms of the sequence reveals
some intriguing structure. This is most clearly brought out if, instead of b,,, one
plots 4(b,)? — 1 against log, n, as in Figure 1.
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Figure 1: A plot of 4(b,)* — 1 versus logyn (1 < n < 1022).
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Figure 2: A closer view.

It looks like an electrocardiogram! More precisely, it seems clear that the
sequence {b,} is asymptotically log, periodic. The zoomed image in Figure 2 of
the latter 5 cycles shows more clearly the progressive stabilization of the picture.

Away from the positive peaks at powers of 2 (which in Figures 1 and 2 occur
at integer values of log, n), it seems reasonable to conjecture that b, has the
asymptotic structure

(25) b~ /1~ (g, — llogy ),

where [log, n] denotes the integer part of log, n, and where the constant g lies
between 2 and 3.

3. Conclusion. In summary, the dyadic distribution we have presented
captures in concrete form some of the strange possibilities realizable within the
context of orthogonal polynomials generated by completely general probability
distributions on R. The apparent asymptotic log, periodicity of the dyadic
distribution’s Jacobi matrix constitutes an intriguing fact that calls for deeper
explanation.
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