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ABSTRACT. Let N be a composite squarefree number; N is said to be
a Carmichael number if p — 1 divides N — 1 for each prime divisor p of N.
H. C. Williams has stated an interesting problem of whether there exists a
Carmichael number N such that p+ 1 divides N 4 1 for each prime divisor
p of N. This is a long standing open question, and it is possible that there
is no such number.

For a given nonzero integer a, we call N an a-Korselt number if N is
composite, squarefree and p — a divides N — a for all primes p dividing N.
We will say that N is an a-Williams number if N is both an a-Korselt
number and a (—a)-Korselt number.

Extending the problem of Willams, one may ask more generally if for
a given nonzero integer a, there is an a-Williams number. We give an
affirmative answer to the question for a = 3p, where p is a prime number
such that 3p—2 and 3p+ 2 are primes. We also prove that each a-Williams
number has at least three prime factors.

RESUME.  Soit N un nombre composé et sans facteur carré; N est dit
un nombre de Carmichael si p — 1 divise N — 1 pour tout diviseur premier
p de N. H. C. Williams a posé un probléme concernant l’existence d’un
nombre de Carmichael N tel que p + 1 divise N + 1 pour tout diviseur
premier p de N. C’est donc un ancient probleme, et il se peut qu’il n’existe
pas de tel nombre.

Pour un entier naturel non nul a, on dit que N est un nombre a-Korselt
si N est composé, sans facteur carré et p—a divise N —a pour tout diviseur
premier p de N. On dira que N est un nombre a-Williams si N est a la
fois a-Korselt et (—a)-Korselt.

On a, alors, le probléeme suivant: pour un entier naturel non nul a,
existe-t-il un nombre a-Williams? On donne une réponse affirmative a
cette question, dans le cas olt @ = 3p, ol p est un nombre premier tel que
3p—2 et 3p+2 sont premiers. On montre aussi que tout nombre a-Williams
possede au moins 3 facteurs premiers.

Introduction A composite number N such that a¥~! = 1 (mod N) and

ged(a, N) = 1 is called a pseudoprime to the base a. This N is called an absolute
pseudoprime or Carmichael number if it is pseudo prime for all bases a with
ged(a, N) = 1. These numbers were first described by Robert Carmichael in
1910. The term Carmichael number was introduced by Beeger [2] in 1950. The
smallest number of this kind is N = 3.11.17 = 561.
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Considerable progress has been made investigating Carmichael numbers in
the past several years. In 1994, Alford, Granville and Pomerance showed, in a
remarkable paper [1], that there are infinitely many Carmichael numbers.

Carmichael numbers meet the following criterion.

Korselt’s criterion (1899) A composite odd number N is a Carmichael num-
ber if and only if N is squarefree and p — 1 divides N — 1 for every prime p
dividing N.

For a given nonzero integer a, we call N an a-Korselt number if N is composite,

squarefree and p — a divides N — a for all primes p dividing N.

Note that the concept of a-Korselt number has been introduced and studied
by Echi, Pinch and Bouallegue!

Let N be a composite squarefree number. The first section of this short note
deals with the set of all a € Z \ {0}, for which N is an a-Korselt number.

Williams [6] stated the problem of whether there exists a Carmichael number

N such that p 4+ 1 divides N + 1 for each prime divisor p of N. This is a

long-standing open question, and it is possible that there is no such number.
For any given non-zero-integer a, we say that N is an a-Williams number if

N is both an a-Korselt number and a (—a)-Korselt number. We are interested

in determining whether there are any a-Williams numbers, and we prove some

results in Section 2.

1. Korselt Numbers

PROPOSITION 1.1.  Let q be the largest prime factor of an a-Korselt num-
ber N. Then 2¢g — N <a < %.

PROOF.  Suppose that a < 0. Then there exists an integer k € N such that
N—a = k(q—a). Since N > ¢, we have k > 2. Hence, N—a = k(¢—a) > 2(¢—a).
Thus, N > 2q — a.

Now suppose that a > 0. Suppose that a > N. Then a — ¢ > a— N > 0, but
since, in addition, ¢ — a divides N — a, we have necessarily a — N = 0, which is
not possible. Therefore, a < N — 1.

Now let us show that a < %. Let p be a prime factor of N. Then p — a
divides N — a. Set d := p —a. Then N > 2p = 2(a + d) (since p divides N and
N > p). Thus a < (N —a) — 2d.

On the other hand, d divides N —a and a < N imply that —d < N — a. This
yields a < 3(N — a) and accordingly a < %. ]

COROLLARY 1.2. If N is an a-Korselt number, then a is never N — 3 or
N —5.

10. Echi, R. Pinch, K. Bouallegue, Korselt numbers, preprint.
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PROOF.  Suppose that a = N — 3. Then N < 12 by Proposition 1.1. Hence
N = 6, since N is squarefree. It follows that 6 is an (N — 3)-Korselt number,
which is not true.

Now suppose that a = N — 5. Then N < 20 by Proposition 1.1. Hence
N € {6,10, 14,15}, since N is squarefree, which is not true for the simple reason
that 6 is not a 1-Korselt number, 10 is not a 5-Korselt number, 14 is not a
9-Korselt number, and 15 is not a 10-Korselt number. [ |

PROPOSITION 1.3.  Let N be a squarefree composite number. Then

{a € Z\ {0} : N is an a-Korselt number} = ﬂ {p —d:d divides N — p}.
p|N
p prime
PROOF. Suppose that N is an a-Korselt number. Let p be a prime di-
viding N. Then d := p — a divides N — a, so that d divides N — p (since
N —-p=N—a—d). Thus

ac () {p—d:ddivides N — p}.
pIN
p prime

Conversely, let
a€ ﬂ {p—d:ddivides N — p}.

pIN
p prime

Then for each prime p dividing N, there exists a divisor d of N — p such that
a =p—d. Hence, p—a = d divides N —a = N — p+ d. Therefore, N is an
a-Korselt number. [ ]

Now, the following corollary is an immediate consequence of Proposition 1.3
(it is also a consequence of Proposition 1.1).

COROLLARY 1.4.  For any given integer N, there are only finitely many
integers a for which N is an a-Korselt number.

Next, we give some comments on Proposition 1.1.

REMARKS 1.5.

(a) The upper bound |2 | of the inequality in Proposition 1.1 is attained for
N = 6. We do not know whether this upper bound is attained for another value
of N.

(b) The lower bound in Proposition 1.1 is never attained. Indeed, suppose
that a = 2¢ — N. As N is composite, N # q. Also, N # 2q else a = 0 which is
impossible. Therefore, N = rq where r > 3, and so a = —(r — 2)q is < 0.

If p is a prime factor of r, then p—a = p+ (r — 2)q divides N —a = q(2r — 2).
Now, ged(p+ (r—2)q, q) = ged(p, ¢) = 1 and so p+ (r —2)q divides 2r — 2. Thus,
2r —2=2+4+(r—2)2<p+ (r—2)q < 2r —2. But, since ¢ > p > 2, we have
p+(r—2)g>2+ (r—2)2 =2r — 2, a contradiction.
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(¢) Corollary 1.2 provides examples of integers 1 < ¢ such that for each square-
free composite number N satisfying the inequality i« < N < 44, N is not an
(N —i)-Korselt number. The only such integers ¢ (up to 100) are: 1, 3, 5, 7, 13,
14, 17,19, 21, 23, 25, 31, 33, 34, 35, 37, 38, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59,
61, 62, 67, 71, 73, 74, 76, 79, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98.

Of course, one may write an easy computer program which detects all such
integers i up to a given integer A.

2. Williams Numbers

THEOREM 2.1.  Let p be a prime number such that 3p — 2 and 3p + 2 are
primes. Let N = p(3p—2)(3p+2) and a € {—3p,3p,5p}. Then N is an a-Korselt
number. In particular, N is a (3p)- Williams number.

ProOOF.  First, remark that p is an odd prime number.

Let a := 3p and N = p(3p — 2)(3p+2). Then, N —a = p(9p? — 7). Hence, 2p
divides N — a. Thus, N is an a-Korselt number.

Now, let us show that N is a (—a)-Korselt number. Indeed, we have N +a =
p[9p? —1] = p(3p—1)(3p+1). Since 3p—1 and 3p+1 are even, 4p divides N +a,
that is, p + a divides N + a. On the other hand, (3p — 2) + a = 2(3p — 1) and
(Bp+2)+a=2(3p+1) so that N + a is a multiple of the numbers (3p —2) +a
and (3p +2) + a.

It remains to prove that N is a (5p)-Korselt number. Indeed, N — 5p =
I(p-1)(p+1); p—1=0 (mod2) and p+ 1 = 0 (mod 2). So that p — 5p
divides N — 5p.

On the other hand, (3p —2) —5p = —2(p+1) and (3p+2) —5p = —2(p — 1);
hence (3p — 2) — 5p and (3p + 2) — 5p divide N — 5p. ]

EXAMPLE 2.2. An easy computer program gives us the following list of
squarefree composite numbers N (up to 108) such that there exists an a € Z\ {0}
for which N is an a-Williams number.

N Prime factorization of N Integers a such that
N is an a-Korselt Number
231 3.7.11 -9,6, 9, 15
1105 5.13.17 ~15, 1, 9, 15, 16, 25
3059 7.19.23 —21, 11, 21, 35
19721 13.37.41 -39, 9, 39, 65
109411 23.67.71 —69, 64, 69, 115
455729 37.109.113 —111, 111, 185
715391 43.127.131 —129, 129, 215
9834131 103.307.311 —309, 309, 515
18434939 127.379.383 —381, 381, 635
38976071 163.487.491 —489, 489, 815
41916499 167.499.503 —501, 501, 835
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Williams observed that if there exists a squarefree composite number N such
that p — 1 divides N — 1 and p + 1 divides N + 1 for each prime factor p of
N, then N must have an odd number > 5 of prime factors [6, p. 142]. In the
general case, Corollary 2.4 asserts that if N is an a-Williams number, then it
has at least three prime factors.

THEOREM 2.3.  Let b be a positive integer or —1. If N is composite, square-
free and p+b divides N +b for all primes p dividing N (that is, N is a (—b)-Kor-
selt number), then N has at least three prime factors.

PROOF.  We break the proof into three steps.

Step 1. Let a € Z\ {0} and N be an a-Korselt number such that ged(N, a) = 1.
If p is a prime dividing N, then N = p (mod p(p — a)).

Let 8 € Z such that N —a = (p —a)B. Then N —p = (p —a)(f — 1). This
forces p to divide (p — a)(8 — 1). But, since ged(a, N) = 1, we conclude that p
divides 8 —1. Thus p(p —a) divides N —p, that is to say, N = p (mod p(p —a)).

Step 2. If a < 1 is an integer and N is an a-Korselt number such that
gcd(N,a) =1, then N has at least three prime factors.

Suppose that N = pg such that p < ¢ are primes. By Step 1, N = ¢
(mod ¢(q — a)), hence N > ¢+ q(q —a) > q+ qlg — 1) = ¢*>. This yields
p > q, a contradiction, completing the proof of Step 2.

As a consequence of Step 2, each Carmichael number (resp., (—1)-Korselt
number) has at least three prime factors.

Thus we may suppose that b > 2.

Step 3. If b > 2, then there is no (—b)-Korselt number with exactly two prime
factors.

Suppose that there exists N = pq, where p, q are distinct primes and p + b,
¢ + b dividing N + b. Then according to Step 2, ged(N,b) # 1. Thus, we may
suppose, without loss of generality, that p divides b.

Let us write b = pt, where t is a nonzero positive integer.

The fact that p+b (= p(1 +t)) divides N + b (= p(q + t)) implies that 1 +¢
divides ¢ +t. Hence, ¢ +¢ = 0 (mod (1 + ¢)), and consequently, we get the
congruence

(Cy) g=1 (mod (1+1)).

On the other hand, ¢ + b divides N 4+ b [= p(¢g + b) + b(p — 1)]. This implies
that ¢ + b divides p(p — 1)t. But, since ged(g + b, p) = 1, we conclude that g + b
divides (p — 1)t.

We claim that ged(q + b,t) = 1. Indeed, if it is not the case, we get
ged(q + b,t) = g so that ¢ divides ¢. Thus, there exists s € N\ {0} such that
t = ¢s. According to congruence (Cy), we have ¢ > 1+ (1 +¢) = 2 + ¢s, which
is not true. It follows that ged(q +b,t) = 1.
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As a consequence of the previous claim, g + b divides p — 1. But ¢ +b =
g+ pt =q+ (p— 1)t +t, which forces ¢ + b to divide g + ¢t. Therefore, g + pt
divides g + t, which is impossible since q +t < q + pt. [ ]

COROLLARY 2.4. Let N be a squarefree composite number and o a nonzero
integer. If N is an a-Williams number, then N has at least three prime factors.

A Carmichael number has at least three prime factors, but a Korselt number
may have exactly two prime factors, as shown by the following proposition.

PrOPOSITION 2.5.  Let p,q be any odd distinct primes and a = p+q — 1.
Then n = pq is an a-Korselt number.

PROOF. Just write n —a =pg—p—q+1=(p—1)(¢— 1) and this is
divisible by p—a = —(¢—1) and by ¢ —a = —(p — 1). [ |

COROLLARY 2.6. If Goldbach’s conjecture is true (that is, if every even in-
teger > 8 can be written as the sum of two distinct primes), then for each odd
integer a > 1, there is an a-Korselt number with two prime factors (just apply
Proposition 2.5). However, there are even integers a > 1 such that there is no
a-Korselt number with two prime factors (see Example 2.8).

The following result deals with Korselt numbers with two prime factors.

THEOREM 2.7. Let a > 1 be an integer, p < q be two prime numbers and
N =pq. If N is an a-Korselt number, then p < q < 4a — 3. In particular, there
are only finitely many a-Korselt numbers with exactly two prime factors.

PRrROOF. We may assume that ¢ > 2a else we are done. Therefore,
ged(g—a,a) = ged(g,a) < a < g, and it divides ¢, so must equal 1. Now g —a di-
vides (N —a)—p(qg—a) = (p—1)a so that ¢—a divides p—1 (as ged(g—a,a) = 1).
Therefore, g —a=p—1else g—a < (p—1)/2 < ¢q/2 — 1, which contradicts the
fact that ¢ > 2a. Now, p — a divides (N —a) — (p —a)(p+2a — 1) = 2a(a — 1).
Clearly, p does not divide a, else ¢ = p+a —1 < 2a — 1 a contradiction. So
ged(p — a,a) = ged(p, a) = 1, which implies that p — a divides 2(a — 1). Hence
g=p+a—1<4a-3. [ ]

It is easy to write a computer program listing integers a less than or equal
to a given integer and for which there are no a-Korselt number with two prime
factors.

EXAMPLE 2.8. The values of a up to 1000 for which there are no a-Korselt
numbers with two prime factors are 1, 2, 250, 330, 378, 472, 516, 546 and 896.
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REMARK 2.9. The upper bound of Theorem 2.7 cannot be improved. For,
if p=3a—2 and g = 4a— 3 are both primes (for example, a =5, p = 13, ¢ = 17)
and N = pq, then lem(p — a,q — a) = lem(2a — 2,3a — 3) = 6(a — 1) divides
N—-a=pg—a=06(a—1)2a—1).

In fact the prime k-tuplets conjecture implies that there are infinitely many
prime pairs of the form 3a — 2, 4a — 3.

Following the heuristic ideas of Erdés which inspired the proof that there are
infinitely many Carmichael numbers [1], we believe that there are infinitely many
a-Korselt numbers for all nonzero integers a. The proof of [1] does not seem to
be easily modified to obtain this result.

The prime k-tuplets conjecture suggests that there are infinitely many prime
triplets p, 3p — 2, 3p + 2, so we believe that there should be infinitely many
examples of a-Williams numbers as in Theorem 2.1. Following the calculations
described in Examples 2.2, it could be that the examples described in Theo-
rem 2.1 provide the only examples of a-Williams numbers.
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