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COMPLEX QUOTIENTS BY NONCLOSED GROUPS

AND THEIR STRATIFICATIONS

FIAMMETTA BATTAGLIA

Presented by Mark Goresky, FRSC

Abstract. We define the notion of complex stratification by quasifolds
and show that such stratified spaces occur as complex quotients by certain

nonclosed subgroups of tori associated to convex polytopes. The spaces

thus obtained provide a natural generalization to the nonrational case of
the notion of toric variety associated with a rational convex polytope.

Résumé. On définit la notion de stratification complexe de quasi-
folds et on montre que ces espaces stratifiés se réalizent comme quotients

complexes par des sousgroupes non fermés de tores, associés aux polytopes

convexes. Les espaces ainsi obtenus donnent une généralization naturelle,

au cas non rationnel, de la notion de variété torique associée à un polytope
convexe rationnel.

Introduction Our aim is to define a geometric object that naturally gen-
eralizes to the nonrational setting, the notion of toric variety associated with a
rational convex polytope. Let d be a real vector space of dimension n and let
∆ be a polytope in d

∗, rational with respect to a lattice L, with d faces of codi-
mension 1. Then the toric variety corresponding to ∆ is the categorical quotient
of a suitable open subset of Cd, modulo the action of a subtorus of (C∗)d, as
shown by Cox [C]. On the other hand, complex toric spaces corresponding to
simple convex polytopes, not necessarily rational, were constructed as complex
quotients in joint work with Elisa Prato [BP1], who had previously given the
construction of these space as symplectic quotients [P]. More precisely, to each
(simple) convex polytope in d

∗, the moment polytope, there corresponds a unique
fan in d — generated by the 1-dimensional cones relative to the codimension-1
faces of the polytope — and many choices of the following data: the generators
of the 1-dimensional cones of the fan and a quasilattice Q in d containing such
generators. A quasilattice in the vector space d is a Z-submodule of d generated
by a set of generators of d (see [S]). In [BP1], for each choice of data relative to
the polytope ∆, we construct an n-dimensional toric space given by the geomet-
ric quotient of an open subset Cd

∆ of Cd by the action of a non necessarily closed
subgroup NC of (C∗)d. The space thus obtained has the structure of a complex
quasifold and is endowed with the holomorphic action of the n-dimensional com-
plex quasitorus DC = dC/Q. Quasitori are a first, natural example of quasifolds;

Received by the editors on June 13, 2007.
Partially supported by GNSAGA (CNR)
AMS Subject Classification: Primary: 14M25; secondary: 53D20, 32S99, 32C15.
Keywords: convex polytopes, complex quotients, quasifolds, stratified spaces.
c© Royal Society of Canada 2007.

33



34 F. BATTAGLIA

they have been introduced, together with the notion of quasifold, in Prato’s ar-
ticle [P]. Complex quasifolds are topological spaces whose local models are open
subsets of Cn modulo the action of finitely generated groups. Local models are
glued together to give rise to a global quasifold structure. Quasifold structures
are highly singular: for example the finitely generated groups obtained are in
general nonclosed, so that the corresponding spaces are non Hausdorff.

Let us now consider a nonsimple convex polytope, not necessarily rational;
once generators of 1-cones and a quasilattice are chosen, we carry on the con-
struction of our space as a complex quotient. Both Cd

∆ and NC can still be
defined: the open set Cd

∆ depends only on the combinatorics of the polytope, or,
equivalently, of the associated fan, whilst the group NC depends on the choice of
generators and quasilattice. The first problem we have to deal with is to make
sense of the quotient Cd

∆//NC: as in the rational nonsimple case, we cannot sim-
ply take the geometric quotient, hence in Section 2 we define a suitable notion of
quotient. Then in Section 3 we work out its structure. Consider a p-dimensional
face F of ∆ and a point ν ∈ F . The polytope ∆, in a neighborhood of ν, is given
by the product of F by a cone over an n− p− 1 dimensional polytope ∆F . We
denote by X∆F

the complex space associated to ∆F , together with the induced
choice of generators of 1-cones and of quasilattice. The face F is regular if ∆F

is a simplex, singular otherwise. As in the rational case, each p-dimensional face
of the polytope corresponds to a p-dimensional orbit of the quasitorus DC act-
ing on X∆. In particular the interior of the polytope corresponds to the dense
open orbit of DC in X∆. Orbits produce a stratification of the quotient X∆

that mirrors the structure of the associated polytope ∆. The union of orbits
corresponding to regular faces gives the regular set of X∆. Orbits corresponding
to singular faces are the singular strata. Intuitively it is clear that each stratum
has a natural structure of complex quasifold, since it is an orbit (or union of or-
bits) of the quasitorus DC. Furthermore, in a neighborhood of a singular orbit,
the quotient X∆ is the product, in a suitable way, of the singular stratum by a
complex cone over X∆F

; it is a twisted product by a finitely generated group.
This group is finite in the rational case, when the decomposition is indeed locally
trivial and strata are smooth, namely the usual notion of stratification is satisfied
(see [GM]). The definitions of complex cone and complex stratification are given
in Section 1. We can then state our main result: given a convex polytope ∆, to
each set of generators and of quasilattice containing them, there corresponds a
complex quotient X∆, endowed with an n-dimensional complex stratification by
quasifolds and acted on holomorphically by a complex quasitorus with a dense
open orbit. Moreover the space X∆ is homeomorphic to its symplectic coun-
terpart, obtained as symplectic quotient (see [BP2,B1]). Such homeomorphism
respects the decompositions and its restriction to each stratum is a diffeomor-
phism, with respect to which the symplectic and complex structures of strata
are compatible. In particular the space X∆ is compact and its strata are in fact
Kähler quasifolds. Remark that, as in the simple case [P,BP1], the space X∆

as complex space depends only on the set of generators and on the quasilattice,
while its symplectic structure depends on the polytope.
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These results complete the generalization of the notion of toric spaces asso-
ciated to nonrational convex polytopes. In particular, they shed light onto the
relationship with the theory of classical toric varieties. The geometry and topol-
ogy of our spaces and the relationship with the properties of the polytope are
natural questions related to our work. A first step towards a better understand-
ing of these different aspects, which will be pursued in the sequel, is to define
and investigate cohomological invariants of our spaces. In this note we give the
general idea of our construction and results, leaving the details of the proofs to
a forthcoming paper.1

1. Complex Stratifications by Quasifolds For the detailed definitions
of real symplectic quasifold, quasitorus and related notions we refer the reader
to [P]; for the complex version of these notions, see [BP1]. Roughly speaking, as
we have already observed, a complex quasifold of dimension n is locally modelled
on the topological quotient of an open subset of Cn by the action of a finitely
generated group. A basic example of real quasifold is Prato’s quasicircle D1

α =
R/Z+ αZ with α ∈ R \Q. This also gives an example of quasitorus [P]. Notice
that if α is taken in Q, then D1

α is either an orbifold or S1. The complexification
(D1

α)C of D1
α is the complex quasitorus given by C/Z+ αZ.

The notions of decomposition and stratification of a space X were given
in [B1]. We allow the pieces of a decomposition to be quasifolds and we re-
quire then the usual properties of a decomposition. The dimension of the maxi-
mal piece is by definition the dimension of X, say n. A smooth map (resp. an
isomorphism) between decomposed spaces is a continuous map (resp. homeomor-
phism) that respects the decompositions and is smooth (resp. a diffeomorphism)
when restricted to pieces. A stratification is a decomposition that locally, near
to each point t of an r-dimensional stratum T , is given by a twisted product
of the kind B̃ × C(L)/Γ, where B̃/Γ is a local model of T around t such that
the finitely generated group Γ acts freely on B̃; L is an (n− r − 1)-dimensional
compact space, called the link of t, decomposed by quasifolds and endowed with
an action of Γ that preserves the decomposition; C(L) is a real cone over L.
Then the decomposition of the link L is required to satisfy the above condition.
Recursively we end up, after a finite number of steps, with links that are compact
quasifolds.

We then give the notion of complex structure of the stratified space. Our
requirements are very strong and are not usually satisfied by complex stratified
spaces, for example the local trivialization is usually far from being holomor-
phic. However they are verified by toric varieties as well as by our toric spaces.
More precisely, we require that for each link L there exists a compact space Y
decomposed by quasifolds and a smooth surjective map s : L → Y , with fibers
diffeomorphic to a fixed 1-parameter subgroup S of a real torus; each piece of
the decomposed spaces X, C(L)’s and Y ’s is endowed with a complex structure

1F. Battaglia, Compactification of complex quasitori and nonrational convex polytopes, in
preparation.
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and the natural projection C(L) \ {cone pt} → Y , induced by s, when restricted
to each piece, is holomorphic, with fibers biholomorphic to the complexification
of S. Moreover, the space X is locally biholomorphic to the product B̃×C(L)/Γ,
that is, the identification mapping is not only a diffeomorphism but a biholo-
morphism when restricted to pieces. We call C(L) a complex cone over Y .

2. Complex Quotients by Nonclosed Groups Our goal here is to gen-
eralize the construction given by Cox: we need to produce, in association with
∆, an open subset of Cd and a subgroup of the torus (C∗)d. We first take care
of the open subset. Consider the open faces of ∆. They can be described as
follows. Write the polytope as intersection of half spaces: ∆ =

⋂d

j=1{µ ∈ d
∗ |

〈µ,Xj〉 ≥ λj} for inward pointing vectors X1, . . . , Xd in d and the real numbers
λ1, . . . , λd determined by our choice of Xi. Notice that the vectors Xi are gen-
erators of the 1-dimensional cones of the fan in d dual to the polytope. For each
face F there exists a subset IF ⊂ {1, . . . , d} such that F = {µ ∈ ∆ | 〈µ,Xj〉 =
λj if and only if j ∈ IF }. The n-dimensional open face of ∆ corresponds to the

empty subset. Define the open set V̂F = {(z1, . . . , zd) ∈ Cd | zj 6= 0 if j /∈ IF }

and denote by Cd
∆ the open subset of Cd given by Cd

∆ =
⋃

F∈∆ V̂F . Notice

that in the definition of the open subset Cd
∆, only the combinatorics of the

polytope intervenes. Moreover, the open subset Cd
∆ coincides with the one de-

fined in [C] for the rational case. It is in the definition of the group acting on
Cd

∆ that nonrationality intervenes. In order to define the group NC we adopt
the following procedure, which is an extension of the procedure introduced by
Delzant [D], extended to the nonrational case first in [P] and then in [BP1,B1].
Let us fix a quasilattice Q in the space d containing the elements Xj (for example
SpanZ{X1, . . . , Xd}). Consider the surjective linear mappings π : Rd → d (resp.
πC : C

d → dC) defined by π(ej) = Xj (resp. πC(ej) = Xj), with {e1, . . . , ed} the
standard basis. Consider the quasitorus d/Q and its complexification dC/Q. The
mappings π and πC induce the group homomorphisms Π: (S1)d = Rd/Zd → d/Q
and ΠC : (C

∗)d = Cd/Zd → dC/Q, respectively. We define N (resp. NC) to be
the kernel of the mapping Π (resp. ΠC). The group N has dimension (d − n).
Let n = Kerπ be the Lie algebra of N . Then for the complexified group NC, the
polar decomposition holds, namely

(1) NC = NA,

where A = exp(in). If Q is an honest lattice, then N is a compact real torus.

For a given polytope, a choice of normals and of quasilattice Q is said to be
rational if Q is a true lattice. There are polytopes that do not admit rational
choices and that are not combinatorially equivalent to rational polytopes [G].
If the polytope is rational in a lattice L, the categorical quotient Cd

∆//NC con-
structed by Cox [C], can be thought of as the quotient of Cd

∆ by the following
equivalence relation: two points in Cd

∆ are equivalent if the closures of the NC-
orbits through these points have nonempty intersection. In our context this
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definition does not lead anywhere, since the group N itself is nonclosed. There-
fore we have to distinguish two different ways in which orbits are nonclosed.
The first is given by the fact that N is nonclosed; this is peculiar to the nonra-
tional setting, and produces the quasifold structure of strata. The other is due
to the fact that, as in the rational case, there are nonclosed A-orbits. There is
absolutely no difference in behavior when it comes to A-orbits. As an example
consider e2πat, with t ∈ R and a a real constant. Let z ∈ C. Obviously the
orbit e2πatz is not influenced by having a rational or not. Therefore we are led
to consider A-orbits. Let z ∈ Cd

∆. We say that the A-orbit Az is closed if it is
closed in Cd

∆. Let J be any set of indices in {1, . . . , d}. We let

KJ = {z ∈ Cd | zj ∈ K if j ∈ J, zj = 0 if j /∈ J},

where K can be either C or C∗. Consider the (C∗)d-orbit

(C∗)I
c

F = {(z1, . . . , zd) ∈ Cd | zj = 0 if and only if j ∈ IF }.

Theorem 2.1. Let z ∈ Cd
∆. Then the A-orbit Az through z is closed if and

only if there exists a face F such that z ∈ (C∗)I
c

F . Moreover, if Az is nonclosed,

then it contains one and only one closed A-orbit.

Theorem 2.1, which holds in the rational setting too, allows us to define on the
open set Cd

∆ the following equivalence relation: two points z and w are equivalent
if and only if (

N(Az)
)
∩ (Aw) 6= ∅,

where the closure is meant in Cd
∆. We define the space X∆ to be the quo-

tient of Cd
∆ by the equivalence relation just defined, we denote the quotient by

X∆ = Cd
∆//NC. Notice that if the polytope is simple, then Cd

∆ =
⋃

F∈∆(C
∗)I

c

F

and the quotient X∆ is just the geometric quotient, whilst if the polytope is
nonsimple and rational, the quotient X∆ is the known categorical quotient.

3. The Stratification The decomposition in pieces of the quotient X∆

reflects the geometry of the polytope ∆. A partial order on the set of all faces
of ∆ is defined by setting F ≤ F ′ if F ⊆ F ′. The polytope ∆ is the disjoint
union of its faces. Let F be a p-dimensional face and let rF = card(IF ), clearly
rF ≥ n− p. When the equality holds the face F is said to be regular, otherwise
singular. Consider dF = Span{Xj | j ∈ IF }, the natural injection jF : dF →֒ d

and the subset Σ⋄

F =
⋂

j∈IF
{ξ ∈ d

∗ | 〈ξ,Xj〉 ≥ λj}. Then j∗F (Σ
⋄

F ) = ΣF

is a polyhedral cone with vertex j∗F (F ). By cutting this cone with an affine
hyperplane transversal to its codimension 1 faces, we obtain an (n − p − 1)-di-
mensional polytope that we call ∆F , which of course depends on the choice
of the hyperplane. Each q-dimensional face G of ∆ greater than F gives a
face in ∆F of dimension q − p − 1, singular if and only if G is singular in ∆.
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Near to F the polytope ∆ is the product of F by a cone over ∆F , and this
is exactly the stratified structure of the toric space that we have constructed.
The maximal stratum is Tmax =

⋃
F reg((C

∗)I
c

F )/NC, whilst there is a piece TF
for each singular face F of ∆, which can be identified with the orbit space
TF = (C∗)I

c

F /NC. Theorem 2.1 implies that the space X∆ is given by the union
of the strata just defined. The structure of X∆ as decomposed space and the
properties that characterize X∆ as toric space associated to ∆ are given in the
following statement:

Theorem 3.1. The subset TF of X∆ corresponding to each p-dimensional

singular face of ∆ is a p-dimensional complex quasifold. The open subset Tmax

is an n-dimensional complex quasifold. These subsets give a decomposition by

complex quasifolds of X∆. Moreover there is a continuous action of DC on X∆,

with the dense open orbit (C∗)d/NC. Such action is holomorphic when restricted

to pieces.

The maximal stratum is said to be the regular stratum, it is the analogue of
the open set of rationally smooth points in the rational case, whilst the strata
corresponding to singular faces are singular (see Lemma 3.2).

Now consider the cone ΣF in the space d
∗

F , with induced normal vectors

Xj ∈ dF , j ∈ IF , and quasilattice Q ∩ dF . Then let X0 =
∑d

j=1 sjXj , with
sj ∈ (0, 1) suitably chosen for j ∈ IF and sj = 0 for j /∈ IF . We consider X0 in
dF and we denote by ann(X0) the annihilator ofX0. We can view ∆F as a convex

polytope lying in the linear hyperplane ann(X0)
kF

→֒ d
∗

F , with induced normal
vectors k∗F (Xj) in ann(X0)

∗ ≃ dF /〈X0〉, j ∈ IF , and quasilattice k∗F (Q ∩ dF ).
The spaces corresponding to the convex sets ΣF and ∆F are XΣF

= CIF //NF
C

and X∆F
= C

IF
∆F

//(NF
0 )C, where the (rF −n+p)-dimensional group NF

C
is given

by NC ∩ (C∗)IF and (NF
0 )C/N

F
C

≃ exp(s+ is), with s = Span{(s1, . . . , sd)}. We
first prove that the stratification satisfies the local triviality condition.

Lemma 3.2. Let F be a singular face, then the singular stratum TF can

be identified with (C∗)p/ΓF , where ΓF is a finitely generated subgroup of (C∗)p

acting on XΣF
and freely on (C∗)p. There is a mapping from (C∗)p ×XΣF

/ΓF

onto the open subset (CIF ×(C∗)IF
c

)//NC of X∆, which is a homeomorphism and

a biholomorphism when restricted to the pieces of the respective decompositions.

Now, in order to complete the proof that the space X∆ is a stratified space, it
remains to show that:

(∗) for each singular face F in ∆ there is a link LF which satisfies the definition.
Moreover, the cone XΣF

, the link LF and the toric space YF = X∆F
have

the properties required for a stratification to be complex.

General results, for example on bundles, are often not readily applicable to our
spaces because of their topology, therefore, although a description of the spaces
in statement (∗) can be given within our set up (see the first row of diagram (2)),
we make use of the interplay with the symplectic quotients in order to give a
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neat description of the link LF and of XΣF
as a real cone over it. Hence, before

going on to describe the cone XΣF
, let us briefly recall from [B1] the symplectic

construction. Let Ψ−1
∆ : Cd → n

∗ be the moment mapping with respect to the

N -action such that Ψ∆(0) =
∑d

j=1 λjι
∗(e∗j ), where ι : n → Rd is the inclusion.

The quotient M∆ = Ψ−1
∆ (0)/N is endowed with a symplectic stratification by

quasifolds and is acted on effectively by the quasitorus D = d/Q. Moreover,
there is a continuous mapping Φ: M∆ → d

∗ whose restriction to each stratum,
with its symplectic structure, is a moment mapping with respect to the action
of D; the image of Φ is exactly ∆. The inclusion Ψ−1

∆ (0) →֒ Cd induces a
continuous mapping χ∆ : Ψ−1

∆ (0)/N → Cd
∆//NC. It was proved in [BP1] that

when the polytope is simple, the mapping χ∆ is a diffeomorphism inducing a
Kähler structure on X∆. For any convex polytope, it remains to prove the
following.

(⋄) The mapping χ∆ identifies the symplectic and complex quotients as
stratified spaces.

Statements (∗) and (⋄) are strictly intertwined and they can be proved to-
gether by induction on the depth of the polytope ∆, which is the maximum
length that a chain of singular faces can attain in ∆. The key diagram is the
following:

(2) CIF //(NF
C
) \ {[0]}

q2
//

s

**

?>=<89:;2

C
IF
∆F

//NF
C
exp(is)

?>=<89:;1

q1
// C

IF
∆F

//NF
0 C

(Ψ−1
ΣF

(0)/NF ) \ {[0]}

χ2

F

OO

p2

//

s′

44

(Ψ∆F
)−1(0)/NF

χ1

F

OO

p1

// (Ψ∆F
)−1(0)/NF

0

χ0

F

OO

The mappings χj
F are all diffeomorphisms of decomposed spaces, both diagrams

commute, the projections q2, p2 allow us to identify the space XΣF
with a real

cone over the link LF , which is the space in the mid column. The projections
p1, q1 are fibrations of the link LF over the compact Kähler spaceX∆F

, with fibre
exp(s), the projections s, s′ are fibrations of the complex space XΣF

\ {cone pt}
over the compact space X∆F

, with fibre exp(s + is). All mappings are natural,
preserve the decompositions and the structure of the strata. We finally state our
main result.

Theorem 3.3. Let d be a vector space of dimension n, and let ∆ ⊂ d
∗

be a convex polytope. Choose inward-pointing normals to the facets of ∆,

X1, . . . , Xd ∈ d, and let Q be a quasilattice containing them. The corre-

sponding quotient X∆ = Cd
∆//NC is a complex stratified space. The mapping

χ∆ : Ψ−1
∆ (0)/N → Cd

∆/NC is an equivariant homeomorphism whose restriction
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to each stratum is a diffeomorphism of quasifolds, with respect to which the sym-

plectic and complex structure are compatible, so that strata have the structure of

Kähler quasifolds.
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