STABLE RANK OF DEPTH TWO INCLUSIONS OF C^* -ALGEBRAS

HIROYUKI OSAKA AND TAMOTSU TERUYA

Presented by George Elliott, FRSC

ABSTRACT. Let $1 \in A \subset B$ be an inclusion of unital C^* -algebras of index-finite type and depth 2. Suppose that A is infinite dimensional, simple, with the property SP. We prove that if $\operatorname{tsr}(A) = 1$, then $\operatorname{tsr}(B) \leq 2$. An interesting special case is $B = A \rtimes_{\alpha} G$, where α is an action of a finite group G on $\operatorname{Aut}(A)$.

RÉSUMÉ. Soit $1 \in A \subset B$ une inclusion de C^* -algèbres unitals du type indice-fini et de profondeur 2. On suppose que A est de dimension infinie, simple, et que A a la propriété SP. On démontre que, si $\operatorname{tsr}(A) = 1$, donc $\operatorname{tsr}(B) \leq 2$. Un cas intéressant est $B = A \rtimes_{\alpha} G$, oú α est une action d'un groupe fini G sur $\operatorname{Aut}(A)$.

1. Introduction. The notion of topological stable rank for a C^* -algebra A, denoted by $\operatorname{tsr}(A)$, was introduced by Rieffel, which generalizes the concept of dimension of a topological space [15]. He presented the basic properties and stability theorem related to K-Theory for C^* -algebras. In [15] he proved that $\operatorname{tsr}(A \rtimes_{\alpha} \mathbb{Z}) \leq \operatorname{tsr}(A) + 1$, and asked if an irrational rotation algebra A_{θ} has topological stable rank two. I. Putnam [14] gave a complete answer to this question, that is, $\operatorname{tsr}(A_{\theta}) = 1$. Moreover, Blackadar, Kumjian, and Rørdam [3] proved that every simple noncommutative torus has topological stable rank one. Naturally, we pose a question of how to compute topological stable rank of $A \rtimes_{\alpha} G$ for any discrete group G.

Blackadar proposed the question in [1] whether $\operatorname{tsr}(A \rtimes_{\alpha} G) = 1$ for any unital AF C^* -algebra A, finite group G, and action α of G on A. In [12] the authors presented a partial answer to an extended form of Blackadar's question using the C^* -index theory of Watatani [18]; that is, let $1 \in A \subset B$ be an inclusion of unital C^* -algebras and let $E \colon B \to A$ be a faithful conditional expectation of index-finite type. Suppose that the inclusion $1 \in A \subset B$ has depth 2 and A is tsr boundedly divisible with $\operatorname{tsr}(A) = 1$. Then $\operatorname{tsr}(B) \leq 2$. Here a C^* -algebra A is tsr boundedly divisible [16, Definition 4.1] if there is a constant K (> 0) such that for every positive integer m there is an integer $n \geq m$ such that A can

Received by the editors on July 11, 2006.

The first author's research was partially supported by Open Research Center Project for Private Universities: matching fund from MEXT, 2004–2008, and the Grant-in-Aid for Scientific Research, Ritsumeikan University, 2005.

AMS subject classification: Primary: 46L05; secondary: 46L80.

Keywords: C^* -algebras, stable rank, property SP.

[©] Royal Society of Canada 2007.

be expressed as $M_n(B)$ for a C^* -algebra B with $tsr(B) \leq K$. A typical such example is $B \otimes UHF$ for any unital C^* -algebra B. As a corollary, one has that if A is a tsr boundedly divisible, unital C^* -algebra with tsr(A) = 1, G a finite group, and α an action of G on A, then $tsr(A \rtimes_{\alpha} G) \leq 2$.

In this note we consider the generalized Blackadar question and get an optimal estimate in some sense: Let $1 \in A \subset B$ be an inclusion of unital C^* -algebras of index-finite type and depth 2. Suppose that A is infinite dimensional simple with $\operatorname{tsr}(A) = 1$ and the property SP. Then $\operatorname{tsr}(B) \leq 2$. In the case of crossed product algebras we conclude that $\operatorname{tsr}(A \rtimes_{\alpha} G) \leq 2$ for a simple unital C^* -algebra A with $\operatorname{tsr}(A) = 1$ and the property SP, and an action α from a finite group G on $\operatorname{Aut}(A)$.

2. **Preliminaries.** Let A be a unital C^* -algebra and $Lg_n(A)$ be the set of elements (b_i) of A^n such that

$$Ab_1 + Ab_2 + \cdots + Ab_n = A.$$

Then the topological stable rank of A, tsr(A), is defined to be the least integer n such that the set $Lg_n(A)$ is dense in A^n . Topological stable rank of a non-unital C^* -algebra is defined by the topological stable rank of its unitization algebra \tilde{A} . Note that tsr(A) = 1 is equivalent to having the dense set of invertible elements in \tilde{A} .

Let A be a C^* -algebra. A is said to have the *property* SP if any non-zero hereditary C^* -subalgebra of A has non-zero projection. It is well known that if A has real rank zero, that is, any self-adjoint element can be approximated by self-adjoint elements with finite spectra, then A has the property SP. (See [4].)

The inclusion $1 \in A \subset B$ of unital C^* -algebras of index-finite type is said to have *finite depth* k if the derived tower obtained by iterating the basic construction

$$A' \cap A \subset A' \cap B \subset A' \cap B_2 \subset A' \cap B_3 \subset \cdots$$

satisfies $(A' \cap B_k)e_k(A' \cap B_k) = A' \cap B_{k+1}$, where $\{e_k\}_{k \geq 1}$ are projections obtained by iterating the basic construction, so that $B_1 = B, e_1 = e_A$, and $B_{k+1} = C^*(B_k, e_k)$ for $k \geq 1$. Let $E_{k+1} : B_{k+1} \to B_k$ be a faithful conditional expectation correspondent to e_{k+1} for $k \geq 1$. (See [5].)

When G is a finite group and α an action of G on A, it is well known that an inclusion $1 \in A \subset A \rtimes_{\alpha} G$ is of depth 2. (See [12, Lemma 3.1].)

3. Main result. The following result is contained in [12, Theorem 5.1].

PROPOSITION 3.1. (cf. [12, Theorem 5.1]) Let $1 \in A \subset B$ be an inclusion of unital C^* -algebras of index-finite type and depth 2. Suppose that tsr(A) = 1. Then we have

$$\sup_{p \in P(A)} \operatorname{tsr}(pBp) < \infty,$$

where P(A) denotes the set of all projections in A.

The following main theorem is an extended version of [12, Theorem 5.1].

THEOREM 3.2. Let $1 \in A \subset B$ be an inclusion of unital C^* -algebras of index-finite type and depth 2. Suppose that A is infinite dimensional simple with tsr(A) = 1 and the property SP. Then $tsr(B) \leq 2$.

PROOF. Since $1 \in A \subset B$ is an inclusion of simple C^* -algebras of index-finite type and depth 2, from Proposition 3.1 we have

$$\sup_{p \in P(A)} \operatorname{tsr}(pBp) < \infty.$$

Set $K = \sup_{p \in P(A)} \operatorname{tsr}(pBp)$.

Since A is simple with the property SP, there is a sequence of mutually orthogonal equivalent projections $\{p_i\}_{i=1}^N$ in A such that N > K. (For example, see [9, Lemma 3.5.7].)

see [9, Lemma 3.5.7].) Set $p = \sum_{i=1}^{N} p_i$. Then pBp has a matrix unit such that

$$pBp \cong M_N(p_1Bp_1).$$

Then, using [15, Theorem 6.1]

$$tsr(pBp) = tsr(M_N(p_1Bp_1))$$

$$= \left\{\frac{tsr(p_1Bp_1) - 1}{N}\right\} + 1$$

$$\leq \left\{\frac{K}{N}\right\} + 1 = 2,$$

where $\{a\}$ denotes least integer greater than a. Since A is simple, p is a full projection in A, and moreover, in B. Hence from [2, Theorem 4.5] we have

$$tsr(B) \le tsr(pBp) \le 2.$$

COROLLARY 3.3. Let A be a simple C^* -algebra with tsr(A) = 1 and having the property SP, and α an action of a finite group G on Aut(A). Then

$$tsr(A \rtimes_{\alpha} G) \leq 2.$$

PROOF. If A is finite dimensional, then so is $A \rtimes_{\alpha} G$, and $\operatorname{tsr}(A \rtimes_{\alpha} G) = 1$. Hence we may assume that A is infinite dimensional.

Since, from [12, Lemma 3.1], $A \subset A \rtimes_{\alpha} G$ is an inclusion of finite index and depth 2, the corollary follows from Theorem 3.2.

REMARK 3.4. If A has tracial topological rank zero, then $\operatorname{tsr}(A)=1$ and A has the property SP. (For example see [8] and [9, Lemma 3.6.6 and Theorem 3.6.10].) Hence by Corollary 3.3, if A is a simple C^* -algebra of tracial topological rank zero and α is an action of a finite group G on $\operatorname{Aut}(A)$, then $\operatorname{tsr}(A \rtimes_{\alpha} G) \leq 2$.

REMARK 3.5. If a given C^* -algebra A has only the condition of tsr(A) = 1, the estimate in Corollary 3.3 is best possible. Indeed, in [1, Example 8.2.1], Blackadar constructed an symmetry action α on CAR such that

$$(C[0,1]\otimes CAR)\rtimes_{id\otimes\alpha}Z_2\cong C[0,1]\otimes B,$$

where B is the tensor product of the Bunce–Deddens algebra of type 2^{∞} and the CAR algebra. Then since $K_1(B)$ is non-trivial, we know that

$$\operatorname{tsr}(C[0,1]\otimes B)=2.$$

(See also [10, Proposition 5.2].)

References

- 1. B. Blackadar, Symmetries of the CAR algebra. Ann. of Math. (2) 131 (1990), 589-623.
- The stable rank of full corners in C*-algebras. Proc. Amer. Math. Soc. 132 (2004), 2945–2950.
- 3. B. Blackadar, A. Kumjian, and M. Rørdam, Approximately central matrix units and the structure of noncommutative tori. K-Theory 6 (1992), 267–284.
- L. G. Brown and G. K. Pedersen, C*-algebras of real rank zero. J. Funct. Anal. 99 (1991), 131–149.
- F. M. Goodman, P. de la Harpe and V. F. R. Jones, Coxeter Graphs and Towers of Algebras. Mathematical Sciences Research Institute Publications 14, Springer-Verlag, New York, 1989.
- 6. M. Izumi, Inclusions of simple C*-algebras. J. Reine Angew. Math. 547 (2002), 97–138.
- J. A. Jeong, H. Osaka, T. Teruya and N. C. Phillips, Cancellation of crossed product algebras. In preparation.
- A. Kumjian, An involutive automorphism of the Bunce-Deddens algebra. C. R. Math. Rep. Acad. Sci. Canada 10 (1988), 217–218.
- H. Lin, Introduction to the classification of amenable C*-algebras. World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
- M. Nagisa, H. Osaka and N. C. Phillips, Ranks of algebras of continuous C*-algebra valued functions. Canad. J. Math. 53 (2001), 979–1030.
- 11. H. Osaka and N. C. Phillips, Crossed products of simple C*-algebras with tracial rank one by actions with tracial Roklin property. In preparation.
- H. Osaka and T. Teruya, Topological stable rank of inclusions of unital C*-algebras, Internat. J. Math. 17 (2006), 19–34.
- 13. N. C. Phillips, Crossed products by finite cyclic group action with the tracial Rokhlin property. Unpublished preprint, arXiv:math.OA/0306410.
- I. Putnam, The invertible elements are dense in the irrational rotation algebras.
 J. Reine Angew. Math. 410 (1990), 160–166.
- M. A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras. Proc. London Math. Soc. 46 (1983), 301–333.

- **16**. _____, The homotopy groups of the unitary groups of non-commutative tori. J. Operator Theory **17** (1987), 237–254.
- $\textbf{17}. \ \ A. \ S. \ Toms, \ \textit{Cancellation does not imply stable rank one.} \ arXiv: math. OA/0509107.$
- **18**. Y. Watatani, $Index\ for\ C^*$ -algebras. Mem. Amer. Math. Soc. **83**, no. 424, Amer. Math. Soc., Providence, RI, 1990.

Department of Mathematical Sciences Ritsumeikan University Kusatsu, Shiga 525-8577 Japan email: osaka@se.ritsumei.ac.jp College of Science and Engineering Ritsumeikan University Kusatsu, Shiga 525-8577 Japan email: teruya@se.ritsumei.ac.jp