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Abstract. Let 1 ∈ A ⊂ B be an inclusion of unital C∗-algebras
of index-finite type and depth 2. Suppose that A is infinite dimensional,
simple, with the property SP. We prove that if tsr(A) = 1, then tsr(B) ≤ 2.
An interesting special case is B = A⋊α G, where α is an action of a finite

group G on Aut(A).

Résumé. Soit 1 ∈ A ⊂ B une inclusion de C∗-algèbres unitals du type

indice-fini et de profondeur 2. On suppose que A est de dimension infinie,
simple, et que A a la propriété SP. On démontre que, si tsr(A) = 1, donc
tsr(B) ≤ 2. Un cas intéressant est B = A ⋊α G, oú α est une action d’un

groupe fini G sur Aut(A).

1. Introduction. The notion of topological stable rank for a C∗-algebra
A, denoted by tsr(A), was introduced by Rieffel, which generalizes the concept
of dimension of a topological space [15]. He presented the basic properties and
stability theorem related to K-Theory for C∗-algebras. In [15] he proved that
tsr(A ⋊α Z) ≤ tsr(A) + 1, and asked if an irrational rotation algebra Aθ has
topological stable rank two. I. Putnam [14] gave a complete answer to this
question, that is, tsr(Aθ) = 1. Moreover, Blackadar, Kumjian, and Rørdam
[3] proved that every simple noncommutative torus has topological stable rank
one. Naturally, we pose a question of how to compute topological stable rank of
A⋊α G for any discrete group G.

Blackadar proposed the question in [1] whether tsr(A⋊αG) = 1 for any unital
AF C∗-algebra A, finite group G, and action α of G on A. In [12] the authors
presented a partial answer to an extended form of Blackadar’s question using
the C∗-index theory of Watatani [18]; that is, let 1 ∈ A ⊂ B be an inclusion of
unital C∗-algebras and let E : B → A be a faithful conditional expectation of
index-finite type. Suppose that the inclusion 1 ∈ A ⊂ B has depth 2 and A is
tsr boundedly divisible with tsr(A) = 1. Then tsr(B) ≤ 2. Here a C∗-algebra
A is tsr boundedly divisible [16, Definition 4.1] if there is a constant K (> 0)
such that for every positive integer m there is an integer n ≥ m such that A can
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be expressed as Mn(B) for a C∗-algebra B with tsr(B) ≤ K. A typical such
example is B ⊗ UHF for any unital C∗-algebra B. As a corollary, one has that
if A is a tsr boundedly divisible, unital C∗-algebra with tsr(A) = 1, G a finite
group, and α an action of G on A, then tsr(A⋊α G) ≤ 2.

In this note we consider the generalized Blackadar question and get an optimal
estimate in some sense: Let 1 ∈ A ⊂ B be an inclusion of unital C∗-algebras
of index-finite type and depth 2. Suppose that A is infinite dimensional simple
with tsr(A) = 1 and the property SP. Then tsr(B) ≤ 2. In the case of crossed
product algebras we conclude that tsr(A⋊αG) ≤ 2 for a simple unital C∗-algebra
A with tsr(A) = 1 and the property SP, and an action α from a finite group G

on Aut(A).

2. Preliminaries. Let A be a unital C∗-algebra and Lgn(A) be the set of
elements (bi) of A

n such that

Ab1 +Ab2 + · · ·+Abn = A.

Then the topological stable rank of A, tsr(A), is defined to be the least integer n
such that the set Lgn(A) is dense in An. Topological stable rank of a non-unital
C∗-algebra is defined by the topological stable rank of its unitization algebra Ã.
Note that tsr(A) = 1 is equivalent to having the dense set of invertible elements
in Ã.

Let A be a C∗-algebra. A is said to have the property SP if any non-zero
hereditary C∗-subalgebra of A has non-zero projection. It is well known that if
A has real rank zero, that is, any self-adjoint element can be approximated by
self-adjoint elements with finite spectra, then A has the property SP. (See [4].)

The inclusion 1 ∈ A ⊂ B of unital C∗-algebras of index-finite type is said to
have finite depth k if the derived tower obtained by iterating the basic construc-
tion

A′ ∩A ⊂ A′ ∩B ⊂ A′ ∩B2 ⊂ A′ ∩B3 ⊂ · · ·

satisfies (A′∩Bk)ek(A
′∩Bk) = A′∩Bk+1, where {ek}k≥1 are projections obtained

by iterating the basic construction, so that B1 = B, e1 = eA, and Bk+1 =
C∗(Bk, ek) for k ≥ 1. Let Ek+1 : Bk+1 → Bk be a faithful conditional expectation
correspondent to ek+1 for k ≥ 1. (See [5].)

When G is a finite group and α an action of G on A, it is well known that an
inclusion 1 ∈ A ⊂ A⋊α G is of depth 2. (See [12, Lemma 3.1].)

3. Main result. The following result is contained in [12, Theorem 5.1].

Proposition 3.1. (cf. [12, Theorem 5.1]) Let 1 ∈ A ⊂ B be an inclusion

of unital C∗-algebras of index-finite type and depth 2. Suppose that tsr(A) = 1.
Then we have

sup
p∈P (A)

tsr(pBp) < ∞,

where P (A) denotes the set of all projections in A.
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The following main theorem is an extended version of [12, Theorem 5.1].

Theorem 3.2. Let 1 ∈ A ⊂ B be an inclusion of unital C∗-algebras of

index-finite type and depth 2. Suppose that A is infinite dimensional simple with

tsr(A) = 1 and the property SP. Then tsr(B) ≤ 2.

Proof. Since 1 ∈ A ⊂ B is an inclusion of simple C∗-algebras of index-finite
type and depth 2, from Proposition 3.1 we have

sup
p∈P (A)

tsr(pBp) < ∞.

Set K = supp∈P (A) tsr(pBp).
Since A is simple with the property SP, there is a sequence of mutually or-

thogonal equivalent projections {pi}
N
i=1 in A such that N > K. (For example,

see [9, Lemma 3.5.7].)

Set p =
∑N

i=1 pi. Then pBp has a matrix unit such that

pBp ∼= MN (p1Bp1).

Then, using [15, Theorem 6.1]

tsr(pBp) = tsr
(

MN (p1Bp1)
)

=
{ tsr(p1Bp1)− 1

N

}

+ 1

≤
{K

N

}

+ 1 = 2,

where {a} denotes least integer greater than a. Since A is simple, p is a full
projection in A, and moreover, in B. Hence from [2, Theorem 4.5] we have

tsr(B) ≤ tsr(pBp) ≤ 2.

Corollary 3.3. Let A be a simple C∗-algebra with tsr(A) = 1 and having

the property SP, and α an action of a finite group G on Aut(A). Then

tsr(A⋊α G) ≤ 2.

Proof. If A is finite dimensional, then so is A⋊α G, and tsr(A⋊α G) = 1.
Hence we may assume that A is infinite dimensional.

Since, from [12, Lemma 3.1], A ⊂ A ⋊α G is an inclusion of finite index and
depth 2, the corollary follows from Theorem 3.2.
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Remark 3.4. If A has tracial topological rank zero, then tsr(A)=1 and A

has the property SP. (For example see [8] and [9, Lemma 3.6.6 and Theo-
rem 3.6.10].) Hence by Corollary 3.3, if A is a simple C∗-algebra of tracial
topological rank zero and α is an action of a finite group G on Aut(A), then
tsr(A⋊α G) ≤ 2.

Remark 3.5. If a given C∗-algebra A has only the condition of tsr(A) = 1,
the estimate in Corollary 3.3 is best possible. Indeed, in [1, Example 8.2.1],
Blackadar constructed an symmetry action α on CAR such that

(C[0, 1]⊗ CAR)⋊id⊗α Z2
∼= C[0, 1]⊗B,

where B is the the tensor product of the Bunce–Deddens algebra of type 2∞ and
the CAR algebra. Then since K1(B) is non-trivial, we know that

tsr(C[0, 1]⊗B) = 2.

(See also [10, Proposition 5.2].)
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