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ABSTRACT. Investigating geometric properties of characteristic vector
fields on geodesic spheres in a complex space form, we characterize complex
space forms in the class of Kahler manifolds.

RiESUME. En étudiant des propriétés géométriques de champs de vec-
teurs caractéristiques sur des spheres géodésiques dans un espace complexe
a courbure constante, on caractérise ces espaces dans la classe des variétés
kahleriennes.

1. Introduction. Let (M,g,J) be a Kahler manifold of complex dimen-
sion n (2 2) and G, (r) a geodesic sphere of radius r centered at © € M. It is
well known that every geodesic sphere of sufficiently small radius r has an almost
contact metric structure (¢,&,7,g). Here £ is the so-called characteristic vector
field on G (r) in M, which is defined by £ = —JN with the outward unit normal
vector field N on G (r).

A complex n-dimensional complex space form M, (c) is a complete simply
connected Kéhler manifold of constant holomorphic sectional curvature ¢, which
is congruent to either a complex projective space CP"(c), a complex Euclidean
space C™ or a complex hyperbolic space CH™(c), according as c¢ is positive, zero
or negative.

Geodesic spheres in M,,(c) are nice objects in differential geometry. For ex-
ample, it is well known that a geodesic sphere G,(r) (0 < r < 7/2) with
tan?r > 2 in CP"(4) is a Berger sphere. We here explain this fact in detail.
Sectional curvatures of G, (r) with tan?r > 2 lie in the interval [6K, K] with
some 6 € (0,1/9), but it has closed geodesics of length (say ¢) shorter than
21 /v K, where K = 4 + cot?r and £ = mwsin2r. These closed geodesics are in-
tegral curves of the characteristic vector field £ of this manifold [12]. Moreover,
every geodesic which is not congruent to such an integral curve has length which
is longer than 27/v/K (see [6, Corollary 2.8]).

So in this paper, we pay attention to the characteristic vector field £ of a
geodesic sphere G, (r) in a complex space form M, (c). This vector field has
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other nice properties as follows.

(1) For each point x € M,(c), any integral curve of £ of every geodesic sphere
G (r) with sufficiently small radius r in M,,(c) is a geodesic on G(r). More-
over, every such integral curve is a circle of positive curvature on some totally
geodesic complex curve M (c) in M, (c).

(2) For each point « € M, (c), the vector £ of every geodesic sphere G, (r) with
sufficiently small radius r in M, (c) is a Killing vector field, that is the Lie
derivative Le¢g on G, (r) of the metric g with the direction £ vanishes (i.e.,
ng = 0)

Motivated by these facts, we shall provide a characterization of complex space
forms in the class of Kéahler manifolds. The purpose of this paper is to prove the
following, which is an improvement of [4].

THEOREM. For a Kdhler manifold M of complex dimension n (2 2), the follow-
ing conditions are equivalent to each other.

(i) M has constant holomorphic sectional curvature.

(ii) For each point x € M, any integral curve of & of every geodesic sphere
G.(r) (with sufficiently small radius r in M) lies locally on some totally
geodesic complex curve L in M.

(iii) For each point x € M and any point p € G(r), the geodesic v = y(s) on
every geodesic sphere G (r) (with sufficiently small radius r in M) with
initial condition v(0) = p, 4(0) = & is a Frenet curve of proper order 2
i M.

(iv) For each point x € M the vector & of every geodesic sphere G(r) (with
sufficiently small radius r in M ) is a Killing vector field.

2. Frenet curves of proper order 2. A smooth curve 7 = (s) in a
Riemannian manifold M (with Riemannian connection V) parametrized by its
arclength s is called a Frenet curve of proper order 2 if there exist a field of
orthonormal frames {5(s), Y} along v and a positive smooth function «(s) sat-
isfying the following system of ordinary differential equations:

(2.1) Vi =k(s)Ys and V;Y, = —k(s)75.

The function & is called the curvature of the Frenet curve « of proper order 2.
Here note that we do not allow the curvature k(s) to vanish at some point.
Therefore curves with inflection points, such as y = 23 on a Euclidean zy-plane,
are not Frenet curves of proper order 2.

When the curvature k is a constant function along ~, say k, the curve satisfying
(2.1) is called a circle of curvature k on M. Needless to say a geodesic is regarded
as a circle of null curvature.
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3. Proof of the theorem. First of all we recall an expansion for the
shape operator of a geodesic sphere due to Chen and Vanhecke (see [7, Theo-
rem 3.1]). For a Riemannian manifold M of dimension greater than 2, we denote
by A, , the shape operator of G, (r) in M of sufficiently small radius r centered
at x € M with respect to the outward unit normal vector field N. We adopt the
following signature of the Riemannian curvature tensor R of M: R(X,Y)Z =
%[X,Y]Z — [%)m ﬁy]Z. The following is a key in our discussion.

LEMMA. For nonzero tangent vectors v,w € T, M at a point x € M, we choose
a unit tangent vector u € T, M orthogonal to both v and w. We denote by
Vr, Wy € Texp (ru)yM the parallel displacements of v, w along the geodesic segment
exp,(su), 0 < s < r. Then for sufficiently small r we have

(3.1) 9(Ay pvp,wy) = %g(v,w) - gg(ﬁ(u,v)w,u) +0(r?).

In the following, we consider a geodesic sphere G (r) in a Kéhler manifold
(M,g,J). The Riemannian connections V of M and V of G,(r) are related by
the following formulas of Gauss and Weingarten:

(3.2) VxY =VxY + (4., X, YN,
(3.3) VN = -4, X,

for vector fields X and Y on G,(r). The almost contact metric structure
(¢7§7777g) is given by

(3.4) 90X, Y)=g(JX,Y), &=-JN, n) =1,
for vector fields X and Y on G, (r), so that
¢¢=0 and ¢’ =-I+n®E,

where I denotes the identity mapping of the tangent bundle TG, (r) of G, (r).
Moreover, the differential of £ is given as

(3.5) Vxé = pA,, X.
Indeed, it follows from (3.2), (3.3), (3.4) and the fact V.J = 0 that

Vxé = Vx€ = g(Aen XN = IVx (=N) + g(Asr X, ININ
=JAp, X — g(JAp . X, NN = 9A, . X.
We say that a real hypersurface of a Kéhler manifold is a Hopf hypersurface if

its characteristic vector £ is a principal curvature vector at each point of this
real hypersurface.
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(ii) = (i) Let v = v(s) be an integral curve (parametrized by its arclength s) of
the vector £ satisfying the condition (ii). We note that the complex curve L has
the Riemannian connection V, since L is totally geodesic in the ambient Kahler
manifold M (with Riemannian connection V). Then the curve v satisfies the
following equation:

(3.6) Ve &y =y (N, (= iy (5)JEy),

where &, = 4(s) and k,(s) is a smooth function on the curve v. On the other
hand, from (3.2) and (3.5) we see that

(37) 6§7§y = ¢Am,r€'y + g(Am,Tg’yv g’y)N"/'

Comparing the tangential components of (3.6) and (3.7), we obtain ¢pA; &, =0,
so that & is principal. Since v is an arbitrary integral curve of &, we know that
our geodesic sphere G, (r) is a Hopf hypersurface of the Kéahler manifold M.
Hence due to the results of [3], [8] we can see that M has constant holomorphic
sectional curvature. However, in the following we prove this fact in detail for
readers.

Given a unit tangent v € T, M we take a unit tangent vector w € T, M which
is orthogonal to v and Jv, and use the Lemma by putting v = Jv. Since u, is
a normal vector of G,(r) in M at y = exp,(ru), the vector v, = —Ju, is the
characteristic vector of G (r) at y, so that v, is a principal curvature vector of
G.(r). This, together with equation (3.1), shows that the curvature tensor R of
M satisfies g(R(u, Ju)w,u) = 0. This means that R(u, Ju)u is proportional to
Ju for every unit vector u at each point x of M, so that our Kahler manifold M
has constant holomorphic sectional curvature (see [11]).

(iii) = (i) It follows from (3.2) and (3.3) that
(38) %'\/'7 = g(Aw,r'% ’7)/\/‘ and %'YN = _Az,r'y

On the other hand, by hypothesis the curve 7y, considered as a curve in the
ambient manifold M, satisfies

(3.9) ﬁ,y"y =£(s)Ys; and ﬁﬁYs = —k(s)%,

where k(s) is a positive smooth function on v and {%(s), Ys} is the Frenet frame
along . Then, from (3.8) and (3.9) we find that A, ,7(s) is proportional to (s)
for each s, that is the vector 4(s) is a principal curvature vector for any s, so
that in particular at the point p = v(0) the vector 4(0) = ¢ is principal. Thus
we can see that our geodesic sphere G, (r) is a Hopf hypersurface in the Kéhler
manifold M. Therefore by virtue of the above discussion we obtain the desirable
conclusion (i).
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(iv) = (i) For all vectors X,Y on G, (r), from (3.5) we have

0= (ng)(X7Y) = g(ngaY) +g(X, VYE)
= g((beﬂ‘X? Y) + g(Xa ¢Ax,rY)
= 9((pAsr — 45,0)X,Y).

Thus the condition (iv) is equivalent to the equality ¢A,, — A, ¢ = 0, so that
in particular ¢A; £ = 0 at every point of G,(r), which shows that our geodesic
sphere G,(r) is a Hopf hypersurface. Therefore the manifold M has constant
holomorphic sectional curvature.

(i) = (ii), (iii), (iv) Since our discussion is local, without loss of generality we may
suppose that our manifold M is either C", CP"(c) or CH"(¢). When ¢ = 0, our
geodesic sphere G, (r) is nothing but a standard hypersphere (of radius r) in C*
embedded as a totally umbilic hypersurface, so that the equality ¢pA; , = Ay r¢
holds on G (r). When ¢ # 0, the geodesic sphere G,(r) is not totally umbilic in
M, (c), but ¢pA, , = Ay+¢ holds (see [10]). Thus we obtain the condition (iv).

Next, we shall check the condition (ii). When ¢ = 0, every integral curve
&, on a standard hypersphere G,(r) is a great circle of G,(r) in the sense of
Euclidean geometry. Hence such a curve is a circle of curvature 1/r on some
complex line C'. When ¢ > 0 (resp. ¢ < 0), our integral curve &, is a circle
of curvature y/ccot(y/cr) (resp. v/|c| coth(y/]¢[r)) on some complex line CP'(c)
(resp. CH*(c)) of the ambient space CP"(c) (resp. CH™(c)), where 0 < r < 7/+/c
(resp. 0 < r < o0). This fact is due to [2], [5]. Therefore we have verified
condition (ii).

Our geodesic sphere G, (r) is a Hopf hypersurface in M, (c), since the geodesic
sphere G (r) satisfies $A,, = Az r¢. This, together with (3.5), yields that
every integral curve of ¢ is a geodesic on the geodesic sphere G.(r). Hence,
from the uniqueness theorem for geodesics and our discussion we can verify the
condition (iii). ]

4. Remarks. Geodesic spheres G, (r) of a nonflat complex space form
M, (c) (= CP™(c) or CH™(c)) are typical examples of naturally reductive Rie-
mannian homogeneous manifolds which are not Riemmanian symmetric spaces.
Hence every geodesic 7y of such a geodesic sphere G, (r) is a homogeneous curve
on G, (r), namely «y is an orbit of some one-parameter subgroup of the isometry
group I(G,(r)) of G4(r). So, in particular every integral curve of the character-
istic vector field £ of G, (r) is a homogeneous curve.

When ¢ > 0, each integral curve of £ satisfies the following equation in the
ambient space (CP"(c),J):

(4.1) Veé = yecot(ver) - JE.

When ¢ < 0, each integral curve of ¢ satisfies the following equation in the
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ambient space (CH"(c), J):

(4.2)

655 Vel coth(y/]e|r) - JE.

On the other hand, due to results of [9] we find that there exist many ho-
mogeneous curves y’s on Gy (r) in M,(c), ¢ # 0 satisfying the following three
conditions.

(1)
(i)

(iii)

It

The curve v is not a geodesic on G,(r).

The curve 7, considered as a curve in M,(c), ¢ # 0, satisfies the following
ordinary differential equation to that of (4.1) or (4.2). That is, when ¢ > 0,
the curve ~ satisfies

= Vecot(ver) - Jy or Vii = —ecot(ver) - J4,
and, when ¢ < 0, the curve v satisfies
%ﬁ’y = /|¢| coth(y/|c|r) - J¥ or 7’7 = —+/|c| coth(~\/]|c|r) - JA.

The curve « is not congruent to each integral curve of & with respect to

I(G4(r)).

is interesting to investigate homogeneous curves which are not geodesics on

G(r) in a nonflat complex space form. Adachi [1] studied curve theory of such
geodesic spheres from this point of view.

N
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