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Abstract. Investigating geometric properties of characteristic vector

fields on geodesic spheres in a complex space form, we characterize complex
space forms in the class of Kähler manifolds.

Résumé. En étudiant des propriétés géométriques de champs de vec-
teurs caractéristiques sur des sphères géodésiques dans un espace complexe
à courbure constante, on caractérise ces espaces dans la classe des variétés
kähleriennes.

1. Introduction. Let (M, g, J) be a Kähler manifold of complex dimen-
sion n (≧ 2) and Gx(r) a geodesic sphere of radius r centered at x ∈ M . It is
well known that every geodesic sphere of sufficiently small radius r has an almost
contact metric structure (φ, ξ, η, g). Here ξ is the so-called characteristic vector
field on Gx(r) in M , which is defined by ξ = −JN with the outward unit normal
vector field N on Gx(r).

A complex n-dimensional complex space form Mn(c) is a complete simply
connected Kähler manifold of constant holomorphic sectional curvature c, which
is congruent to either a complex projective space CPn(c), a complex Euclidean
space C

n or a complex hyperbolic space CHn(c), according as c is positive, zero
or negative.

Geodesic spheres in Mn(c) are nice objects in differential geometry. For ex-
ample, it is well known that a geodesic sphere Gx(r) (0 < r < π/2) with
tan2 r > 2 in CPn(4) is a Berger sphere. We here explain this fact in detail.
Sectional curvatures of Gx(r) with tan2 r > 2 lie in the interval [δK,K] with
some δ ∈ (0, 1/9), but it has closed geodesics of length (say ℓ) shorter than
2π/

√
K, where K = 4 + cot2 r and ℓ = π sin 2r. These closed geodesics are in-

tegral curves of the characteristic vector field ξ of this manifold [12]. Moreover,
every geodesic which is not congruent to such an integral curve has length which
is longer than 2π/

√
K (see [6, Corollary 2.8]).

So in this paper, we pay attention to the characteristic vector field ξ of a
geodesic sphere Gx(r) in a complex space form Mn(c). This vector field has
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other nice properties as follows.

(1) For each point x ∈ Mn(c), any integral curve of ξ of every geodesic sphere
Gx(r) with sufficiently small radius r in Mn(c) is a geodesic on Gx(r). More-
over, every such integral curve is a circle of positive curvature on some totally
geodesic complex curve M1(c) in Mn(c).

(2) For each point x ∈ Mn(c), the vector ξ of every geodesic sphere Gx(r) with
sufficiently small radius r in Mn(c) is a Killing vector field, that is the Lie
derivative Lξg on Gx(r) of the metric g with the direction ξ vanishes (i.e.,
Lξg = 0).

Motivated by these facts, we shall provide a characterization of complex space
forms in the class of Kähler manifolds. The purpose of this paper is to prove the
following, which is an improvement of [4].

Theorem. For a Kähler manifold M of complex dimension n (≧ 2), the follow-
ing conditions are equivalent to each other.

(i) M has constant holomorphic sectional curvature.
(ii) For each point x ∈ M , any integral curve of ξ of every geodesic sphere

Gx(r) (with sufficiently small radius r in M) lies locally on some totally
geodesic complex curve L in M .

(iii) For each point x ∈ M and any point p ∈ Gx(r), the geodesic γ = γ(s) on
every geodesic sphere Gx(r) (with sufficiently small radius r in M) with
initial condition γ(0) = p, γ̇(0) = ξ is a Frenet curve of proper order 2
in M .

(iv) For each point x ∈ M the vector ξ of every geodesic sphere Gx(r) (with
sufficiently small radius r in M) is a Killing vector field.

2. Frenet curves of proper order 2. A smooth curve γ = γ(s) in a
Riemannian manifold M (with Riemannian connection ∇) parametrized by its
arclength s is called a Frenet curve of proper order 2 if there exist a field of
orthonormal frames {γ̇(s), Ys} along γ and a positive smooth function κ(s) sat-
isfying the following system of ordinary differential equations:

(2.1) ∇γ̇ γ̇ = κ(s)Ys and ∇γ̇Ys = −κ(s)γ̇.

The function κ is called the curvature of the Frenet curve γ of proper order 2.
Here note that we do not allow the curvature κ(s) to vanish at some point.
Therefore curves with inflection points, such as y = x3 on a Euclidean xy-plane,
are not Frenet curves of proper order 2.

When the curvature κ is a constant function along γ, say k, the curve satisfying
(2.1) is called a circle of curvature k on M . Needless to say a geodesic is regarded
as a circle of null curvature.
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3. Proof of the theorem. First of all we recall an expansion for the
shape operator of a geodesic sphere due to Chen and Vanhecke (see [7, Theo-
rem 3.1]). For a Riemannian manifold M of dimension greater than 2, we denote
by Ax,r the shape operator of Gx(r) in M of sufficiently small radius r centered
at x ∈ M with respect to the outward unit normal vector field N . We adopt the
following signature of the Riemannian curvature tensor R̃ of M : R̃(X,Y )Z =

∇̃[X,Y ]Z − [∇̃X , ∇̃Y ]Z. The following is a key in our discussion.

Lemma. For nonzero tangent vectors v, w ∈ TxM at a point x ∈ M , we choose
a unit tangent vector u ∈ TxM orthogonal to both v and w. We denote by
vr, wr ∈ Texp

x
(ru)M the parallel displacements of v, w along the geodesic segment

expx(su), 0 ≦ s ≦ r. Then for sufficiently small r we have

(3.1) g(Ax,rvr, wr) =
1

r
g(v, w)− r

3
g
(
R̃(u, v)w, u

)
+O(r2).

In the following, we consider a geodesic sphere Gx(r) in a Kähler manifold

(M, g, J). The Riemannian connections ∇̃ of M and ∇ of Gx(r) are related by
the following formulas of Gauss and Weingarten:

∇̃XY = ∇XY + g(Ax,rX,Y )N ,(3.2)

∇̃XN = −Ax,rX,(3.3)

for vector fields X and Y on Gx(r). The almost contact metric structure
(φ, ξ, η, g) is given by

(3.4) g(φX, Y ) = g(JX, Y ), ξ = −JN , η(ξ) = 1,

for vector fields X and Y on Gx(r), so that

φξ = 0 and φ2 = −I + η ⊗ ξ,

where I denotes the identity mapping of the tangent bundle TGx(r) of Gx(r).
Moreover, the differential of ξ is given as

(3.5) ∇Xξ = φAx,rX.

Indeed, it follows from (3.2), (3.3), (3.4) and the fact ∇̃J = 0 that

∇Xξ = ∇̃Xξ − g(Ax,rX, ξ)N = J∇̃X(−N ) + g(Ax,rX, JN )N
= JAx,rX − g(JAx,rX,N )N = φAx,rX.

We say that a real hypersurface of a Kähler manifold is a Hopf hypersurface if
its characteristic vector ξ is a principal curvature vector at each point of this
real hypersurface.
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(ii) ⇒ (i) Let γ = γ(s) be an integral curve (parametrized by its arclength s) of
the vector ξ satisfying the condition (ii). We note that the complex curve L has

the Riemannian connection ∇̃, since L is totally geodesic in the ambient Kähler
manifold M (with Riemannian connection ∇̃). Then the curve γ satisfies the
following equation:

(3.6) ∇̃ξγ ξγ = κγ(s)Nγ (= κγ(s)Jξγ),

where ξγ = γ̇(s) and κγ(s) is a smooth function on the curve γ. On the other
hand, from (3.2) and (3.5) we see that

(3.7) ∇̃ξγ ξγ = φAx,rξγ + g(Ax,rξγ , ξγ)Nγ .

Comparing the tangential components of (3.6) and (3.7), we obtain φAx,rξγ = 0,
so that ξγ is principal. Since γ is an arbitrary integral curve of ξ, we know that
our geodesic sphere Gx(r) is a Hopf hypersurface of the Kähler manifold M .
Hence due to the results of [3], [8] we can see that M has constant holomorphic
sectional curvature. However, in the following we prove this fact in detail for
readers.

Given a unit tangent v ∈ TxM we take a unit tangent vector w ∈ TxM which
is orthogonal to v and Jv, and use the Lemma by putting u = Jv. Since ur is
a normal vector of Gx(r) in M at y = expx(ru), the vector vr = −Jur is the
characteristic vector of Gx(r) at y, so that vr is a principal curvature vector of

Gx(r). This, together with equation (3.1), shows that the curvature tensor R̃ of

M satisfies g
(
R̃(u, Ju)w, u

)
= 0. This means that R̃(u, Ju)u is proportional to

Ju for every unit vector u at each point x of M , so that our Kähler manifold M
has constant holomorphic sectional curvature (see [11]).

(iii) ⇒ (i) It follows from (3.2) and (3.3) that

(3.8) ∇̃γ̇ γ̇ = g(Ax,rγ̇, γ̇)N and ∇̃γ̇N = −Ax,rγ̇.

On the other hand, by hypothesis the curve γ, considered as a curve in the
ambient manifold M , satisfies

(3.9) ∇̃γ̇ γ̇ = κ(s)Ys and ∇̃γ̇Ys = −κ(s)γ̇,

where κ(s) is a positive smooth function on γ and {γ̇(s), Ys} is the Frenet frame
along γ. Then, from (3.8) and (3.9) we find that Ax,rγ̇(s) is proportional to γ̇(s)
for each s, that is the vector γ̇(s) is a principal curvature vector for any s, so
that in particular at the point p = γ(0) the vector γ̇(0) = ξ is principal. Thus
we can see that our geodesic sphere Gx(r) is a Hopf hypersurface in the Kähler
manifold M . Therefore by virtue of the above discussion we obtain the desirable
conclusion (i).



118 S. MAEDA

(iv) ⇒ (i) For all vectors X,Y on Gx(r), from (3.5) we have

0 = (Lξg)(X,Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ)

= g(φAx,rX,Y ) + g(X,φAx,rY )

= g
(
(φAx,r −Ax,rφ)X,Y

)
.

Thus the condition (iv) is equivalent to the equality φAx,r −Ax,rφ = 0, so that
in particular φAx,rξ = 0 at every point of Gx(r), which shows that our geodesic
sphere Gx(r) is a Hopf hypersurface. Therefore the manifold M has constant
holomorphic sectional curvature.

(i)⇒ (ii), (iii), (iv) Since our discussion is local, without loss of generality we may
suppose that our manifold M is either Cn, CPn(c) or CHn(c). When c = 0, our
geodesic sphere Gx(r) is nothing but a standard hypersphere (of radius r) in C

n

embedded as a totally umbilic hypersurface, so that the equality φAx,r = Ax,rφ
holds on Gx(r). When c 6= 0, the geodesic sphere Gx(r) is not totally umbilic in
Mn(c), but φAx,r = Ax,rφ holds (see [10]). Thus we obtain the condition (iv).

Next, we shall check the condition (ii). When c = 0, every integral curve
ξγ on a standard hypersphere Gx(r) is a great circle of Gx(r) in the sense of
Euclidean geometry. Hence such a curve is a circle of curvature 1/r on some
complex line C

1. When c > 0 (resp. c < 0), our integral curve ξγ is a circle

of curvature
√
c cot(

√
cr) (resp.

√
|c| coth(

√
|c|r)) on some complex line CP 1(c)

(resp. CH1(c)) of the ambient space CPn(c) (resp. CHn(c)), where 0 < r < π/
√
c

(resp. 0 < r < ∞). This fact is due to [2], [5]. Therefore we have verified
condition (ii).

Our geodesic sphere Gx(r) is a Hopf hypersurface in Mn(c), since the geodesic
sphere Gx(r) satisfies φAx,r = Ax,rφ. This, together with (3.5), yields that
every integral curve of ξ is a geodesic on the geodesic sphere Gx(r). Hence,
from the uniqueness theorem for geodesics and our discussion we can verify the
condition (iii).

4. Remarks. Geodesic spheres Gx(r) of a nonflat complex space form
Mn(c) (= CPn(c) or CHn(c)) are typical examples of naturally reductive Rie-
mannian homogeneous manifolds which are not Riemmanian symmetric spaces.
Hence every geodesic γ of such a geodesic sphere Gx(r) is a homogeneous curve
on Gx(r), namely γ is an orbit of some one-parameter subgroup of the isometry
group I

(
Gx(r)

)
of Gx(r). So, in particular every integral curve of the character-

istic vector field ξ of Gx(r) is a homogeneous curve.
When c > 0, each integral curve of ξ satisfies the following equation in the

ambient space
(
CPn(c), J

)
:

(4.1) ∇̃ξξ =
√
c cot(

√
cr) · Jξ.

When c < 0, each integral curve of ξ satisfies the following equation in the
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ambient space (CHn(c), J):

(4.2) ∇̃ξξ =
√
|c| coth(

√
|c|r) · Jξ.

On the other hand, due to results of [9] we find that there exist many ho-
mogeneous curves γ’s on Gx(r) in Mn(c), c 6= 0 satisfying the following three
conditions.

(i) The curve γ is not a geodesic on Gx(r).
(ii) The curve γ, considered as a curve in Mn(c), c 6= 0, satisfies the following

ordinary differential equation to that of (4.1) or (4.2). That is, when c > 0,
the curve γ satisfies

∇̃γ̇ γ̇ =
√
c cot(

√
cr) · Jγ̇ or ∇̃γ̇ γ̇ = −√

c cot(
√
cr) · Jγ̇,

and, when c < 0, the curve γ satisfies

∇̃γ̇ γ̇ =
√
|c| coth(

√
|c|r) · Jγ̇ or ∇̃γ̇ γ̇ = −

√
|c| coth(

√
|c|r) · Jγ̇.

(iii) The curve γ is not congruent to each integral curve of ξ with respect to
I
(
Gx(r)

)
.

It is interesting to investigate homogeneous curves which are not geodesics on
Gx(r) in a nonflat complex space form. Adachi [1] studied curve theory of such
geodesic spheres from this point of view.
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